
Problem Solving and
Programming with

Python
Reema ThaReja

Assistant Professor
Department of Computer Science

Shyama Prasad Mukherji College for Women
University of Delhi

as per anna University syllabus - Ge8151

Second edition

9780190120931_Title page.indd 1 14-05-2019 11:16:28

Problem Solving and
Programming with

Python
Reema ThaReja

Assistant Professor
Department of Computer Science

Shyama Prasad Mukherji College for Women
University of Delhi

as per anna University syllabus - Ge8151

Second edition

9780190120931_Title page.indd 1 14-05-2019 11:16:28

Problem Solving and Programming with Python_2e_6th Revised.indb 1 15-05-2019 20:02:17

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

3
Oxford University Press is a department of the University of Oxford.

It furthers the University’s objective of excellence in research, scholarship,
and education by publishing worldwide. Oxford is a registered trade mark of

Oxford University Press in the UK and in certain other countries.

Published in India by
Oxford University Press

Ground Floor, 2/11, Ansari Road, Daryaganj, New Delhi 110002, India

© Oxford University Press 2018, 2019

The moral rights of the author/s have been asserted.

First Edition published in 2018
Second Edition published in 2019

All rights reserved. No part of this publication may be reproduced, stored in
a retrieval system, or transmitted, in any form or by any means, without the

prior permission in writing of Oxford University Press, or as expressly permitted
by law, by licence, or under terms agreed with the appropriate reprographics

rights organization. Enquiries concerning reproduction outside the scope of the
above should be sent to the Rights Department, Oxford University Press, at the

address above.

You must not circulate this work in any other form
and you must impose this same condition on any acquirer.

ISBN-13: 978-0-19-012093-1
ISBN-10: 0-19-012093-2

Typeset in Times New Roman
by Ideal Publishing Solutions, Delhi

Printed in India by

Cover image: ©andriano.cz / Shutterstock

Third-party website addresses mentioned in this book are provided
by Oxford University Press in good faith and for information only.

Oxford University Press disclaims any responsibility for the material contained therein.

9780190120931_verso.indd 1 14-05-2019 11:18:14

Problem Solving and Programming with Python_2e_6th Revised.indb 2 15-05-2019 20:02:17

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Computers are so widely used in our day-to-day lives that imagining a life without them has become almost
impossible. They are not only used by professionals but also by children for interactively learning lessons,
playing games, and doing their homework. Applications of the computer and its users are increasing by
the day. Learning computer and programming basics is a stepping stone to having an insight into how the
machines work. In-depth knowledge of basic computing terminologies and problem solving strategies such as
algorithm, flowchart, and pseudocode are very essential to develop efficient and effective computer programs
that may help solve a user’s problems.

Since computers cannot understand human languages, special programming languages are designed for
this purpose. Python is one such language. It is an open-source, easy, high-level, interpreted, interactive,
object-oriented and reliable language that uses English-like words. It can run on almost all platforms
including Windows, Mac OS X, and Linux. Python is also a versatile language that supports development of
a wide range of applications ranging from simple text processing to WWW browsers to games. Moreover,
programmers can embed Python within their C, C++, COM, ActiveX, CORBA, and Java programs to give
‘scripting’ capabilities to the users.

Python uses easy syntax and short codes as well as supports multiple programming paradigms, including
object oriented programming, functional Python programming, and parallel programming models. Hence, it
has become an ideal choice for the programmers and even the novices in computer programming field find it
easy to learn and implement. It has encompassed a huge user base that is constantly growing and this strength
of Python can be understood from the fact that it is the most preferred programming language in companies
such as Nokia, Google, YouTube, and even NASA for its easy syntax and short codes.

�About the Book
This book is designed as a textbook to cater to the requirements of the Python programming course offered to
the first year engineering students of Anna University. The objective of this book is to introduce the students
to the fundamentals of problem solving strategies and the concepts of Python programming language, and
enable them to apply these concepts for solving real-world problems.

The book is organized into 8 chapters that provide comprehensive coverage of all the relevant topics using
simple language. It also contains useful annexures to various chapters including for additional information.
Case studies and appendices are also provided to supplement the text.

Programming skill is best developed by rigorous practice. Keeping this in mind, the book provides a
number of programming examples that would help the reader learn how to write efficient programs. These
programming examples have already been complied and tested using Python 3.4.1 version and can be also
executed on Python 3.5 and 3.6 versions. To further enhance the understanding of the subject, there are
numerous chapter-end exercises provided in the form of objective-type questions, review questions, and
programming problems.

�Key Features of the Book
The following are the important features of the book:

•	 Complete coverage of the Problem Solving and Python Programming syllabus offered by Anna University
•	 Offers simple and lucid treatment of concepts supported with illustrations for easy understanding
•	 Contains separate chapters on Strings, Files, Classes, and Exception Handling

Preface

Problem Solving and Programming with Python_2e_6th Revised.indb 5 15-05-2019 20:02:18

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

vi Preface

•	 Provides numerous programming and illustrative examples along with their outputs to help students
master the art of writing efficient Python programs

•	 Includes notes and programming tips to highlight the important concepts and help readers avoid common
programming errors

•	 Offers rich chapter-end pedagogy including plenty of objective-type questions (with answers), review
questions, programming and debugging exercises to facilitate revision and practice of concepts learnt

•	 Includes 6 annexures and 4 appendices covering differences between Python 2.x and 3.x, installing
Python, debugging and testing, Turtle graphics, plotting graphs, lab exercises, and GUI Programming
provided to supplement the text. Exercises are also added at the end of several annexures and appendices

•	 Includes lab exercises explained through algorithms and flowcharts to help readers hone their logical and
programming abilities

•	 Provides case studies on creating calculator, calendar, hash files, compressing strings and files, finding resolution
of an image, and mail merge that are linked to various chapters to demonstrate the application of concepts

•	 Contains 2 solved previous years’ question papers and 2 solved model question papers included to help
readers prepare for the semester-end university examinations

•	 Point-wise summary and glossary of key terms to aid quick recapitulation to concepts

�Organization of the Book
The book contains 8 chapters, 6 annexures, 7 case studies, and 4 appendices. The details of the book are
presented as follows.

Chapter 1 discusses the various strategies used for problem solving. Topics such as algorithms, flowcharts,
and pseudocodes supported with some illustrative problems are covered in this chapter.

Annexure 1 discusses about programming languages and their evolution through generations. It describes
different programming paradigms, features of OOP, and merits and demerits of object oriented programming
languages. The chapter also gives a comparative study Python and other OOP languages, and highlights the
applications of OOP paradigm.

Chapter 2 details the history, important features, and applications of Python. It also presents the various
building blocks (such as keywords, identifiers, constants variables, operators, expressions, statements, and
naming conventions) supported by the language. It discusses functions and modules, and Python interpreter
and interactive mode too.

The chapter is followed by 3 annexures—Annexure 2 provides instructions for installing Python, Annexure
3 provides the comparison between Python 2.x and Python 3.x versions, and Annexure 4 discusses testing
and debugging of Python programs using IDLE.

Chapter 3 deals with the different types of decision control statements such as selection/conditional
branching, iterative, break, continue, pass, and else statements.

Case studies 1 and 2 on simple calculator and generating a calendar show the implementation of concepts
discussed in Chapters 2 and 3.

Chapter 4 provides a detailed explanation of defining and calling functions. It also explains the important
concepts such as variable length arguments, fruitful functions, recursive functions, and function composition
in Python.

Annexure 5 explains how functions are objects in Python. Case study 3 on shuffling a deck of cards
demonstrates the concepts of functions as well as recursion.

Chapter 5 unleashes the concept of strings. The chapter lays special focus on the operators used with
strings, slicing operation, built-in string methods and functions, comparing and iterating through strings, and
the string module.

Chapter 6 details the different data structures (such as list, tuple, dictionary, etc.) that are extensively used
in Python. It deals with creating, accessing, cloning, ad updating of lists as well as list methods and functions.
It also describes functional programming and creating, accessing, and updating tuples. It also includes the

Problem Solving and Programming with Python_2e_6th Revised.indb 6 15-05-2019 20:02:18

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

viiPreface

concepts related to dictionaries, nested lists, aliasing, list parameters, lists as arrays, nested tuples, nested
dictionaries, advanced list processing, and dictionary comprehensions.

Chapter 7 discusses how data can be stored in files. The chapter deals with opening, processing (like
reading, writing, appending, etc.), and closing of files though a Python program. These files are handled in
text mode as well as binary mode for better clarity of the concepts. The chapter also explains the concept
of file, directory, and the os module. It also discusses % (string formatting operator) and command line
arguments.

Case studies 4, 5, and 6 on creating a hash file, mail merge, and finding the resolution of an image
demonstrate the applications of concepts related strings and file handling.

Chapter 8 elucidates the concepts of exception handling that can be used to make your programs robust.
Concepts such as try, except, and finally blocks, raising and re-raising exceptions, built-in and user-defined
exceptions, assertions, and handling invoked functions, used for handling exceptions are demonstrated in this
chapter. It also discusses the concept of modules and packages.

Annexure 6 discusses classes and objects.
Case study 7 shows how to compress strings and files using exception handling concepts.
The 4 appendices included in the book discuss about lab exercises, GUI programming, usage of Turtle

graphics, and plotting graphs.

�Online Resources
For the benefit of faculty and students reading this book, additional resources available online include:

� For Faculty
•	 Solutions manual (for programming exercises)
•	 Chapter-wise PPTs
•	 Chapters on Inheritance and Operator Overloading
•	 Additional Material

For Students
•	 Lab exercises
•	 Test generator
•	 Projects
•	 Solutions to find the output and error exercises
•	 Extra reading material on unit testing in Python, sorting and searching methods, multi-threaded

programming, network programming, event-driven programming and accessing databases using Python,
and additional information on some more topics

•	 Additional algorithms, pseudocodes, and flowcharts

� Acknowledgements
The writing of this textbook was a mammoth task for which a lot of help was required from many people.
Fortunately, I have had wholehearted support of my family, friends, and fellow members of the teaching staff
and students at Shyama Prasad Mukherji College, New Delhi.

My special thanks would always go to my parents, Mr Janak Raj Thareja and Mrs Usha Thareja, and my
siblings, Pallav, Kimi, and Rashi, who were a source of abiding inspiration and divine blessings for me. I
am especially thankful to my son, Goransh, who has been very patient and cooperative in letting me realize
my dreams. My sincere thanks go to my uncle, Mr B.L. Theraja, for his inspiration and guidance in writing
this book.

I would like to acknowledge the technical assistance provided to me by Mr Mitul Kapoor. I would like to
thank him for sparing out his precious time to help me to design and test the programs.

Problem Solving and Programming with Python_2e_6th Revised.indb 7 15-05-2019 20:02:18

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Brief Contents

Preface  v
Brief Contents  ix
Road Map to Syllabus  xiv

	 1.	 Algorithmic Problem Solving	 1

		 Annexure 1 —Introduction to Object Oriented Programming (OOP)	 25

	 2.	 Basics of Python Programming	 37
Annexure 2 — Installing Python	 83
Annexure 3 — Comparison between Python 2.x and Python 3.x Versions	 85
Annexure 4 — Testing and Debugging	 88

	 3.	 Control Flow Statements 	 95
Case Study 1 — Simple Calculator	 140
Case Study 2 — Generating a Calendar	 143

	 4.	 Functions	 145
Annexure 5 — Functions as Objects	 187
Case Study 3 — Shuffling a Deck of Cards	 189

	 5.	 Strings 	 190

	 6.	 Lists, Tuples, and Dictionaries	 233

	 7.	 File Handling	 303
Case Study 4 — Creating a Hash File (or a message digest of a file)	 334
Case Study 5 — Mail Merge Program	 336
Case Study 6 — Finding Resolution of an Image	 338

	 8.	 Error and Exception Handling, Modules, and Packages	 339
Annexure 6 — Classes and Objects	 369
Case Study 7 — Compressing String and Files	 381

Appendix A — Lab Exercises� 384
Appendix B — GUI Programming with tkinter Package� 407
Appendix C — Simple Graphics using Turtle� 417
Appendix D — Plotting Graphs in Python� 423
Solved Question Paper (2018/19)� 429
Solved Question Paper (2017/18)� 444
Solved Model Question Paper - 1� 461
Solved Model Question Paper - 2� 463
About the Author� 465

Problem Solving and Programming with Python_2e_6th Revised.indb 9 15-05-2019 20:02:18

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

Detailed Contents

Preface  v
Brief Contents  ix
Road Map to Syllabus  xiv

	 2.8	 Boolean  46
	 2.9	 Lists  46
	2.10	 Strings  47
	2.11	 Variables and Identifiers  50
	2.12	 Data Types  51
	2.13	 Statements  51

	2.13.1	 Assignment Statement  51
	2.13.2	 Input Statement  54
	2.13.3	 Indentation  54

	2.14	 Reserved Words  55
	2.15	 Tuple Statement  55
	2.16	 Dictionary  56
	2.17	 Operators and Expressions  56

	2.17.1	 Arithmetic Operators  56
	2.17.2	 Comparison Operators  57
	2.17.3	 Assignment and In-place or

Shortcut Operators  58
	2.17.4	 Unary Operators  59
	2.17.5	 Bitwise Operators  59
	2.17.6	 Shift Operators  60
	2.17.7	 Logical Operators  60
	2.17.8	 Membership Operators  61
	2.17.9	 Identity Operators  61
	2.17.10	Operators Precedence and

Associativity  62
	2.18	 Expressions in Python  63
	2.19	 Operations on Strings  63

	2.19.1	 Concatenation  64
	2.19.2	 Multiplication (or String

Repetition) 	 64
	2.19.3	 Slice a String  65

	2.20	 Type Conversion  66
	2.21	 Comments  67
	2.22	 Function and Modules  68

	2.22.1	 Function Definition and Use  68
	2.22.2	 Flow of Execution  68
	2.22.3	 Parameters and Arguments  69

Annexure 2 — Installing Python  83

	 1.	 Algorithmic Problem Solving  1

	 1.1	 Introduction  1
	 1.2	 Algorithms  1
	 1.3	� Building Blocks of Algorithm

(Instructions, State, Control flow,
Functions)  2
	 1.3.1	 Subcharts/Subroutine/Predefined

Process  2
	 1.4	 Algorithmic Problem Solving

Steps  2
	 1.5	� Simple Strategies and Notations for

Developing Algorithms  3
	 1.5.1	 Control Structures Used in

Algorithms  4
	 1.5.2	 Flowcharts  8
	 1.5.3	 Pseudocodes  10
	 1.5.4	 Programming Languages  12

	 1.6	 Illustrative Problems  13
	 1.6.1	 Find Minimum in a List  13
	 1.6.2	 Insert a Card in a List of Sorted

Cards  15
	 1.6.3	 Guess an Integer Number in a

Range  17
	 1.6.4	 Tower of Hanoi  19

Annexure 1 — Introduction to Object
Oriented Programming (OOP)	 25

	 2.	 Basics of Python Programming  37

	 2.1	 Features of Python  37
	 2.2	 History of Python  39
	 2.3	 The Future of Python  41
	 2.4	 Python Interpreter and Interactive

Mode  41
	 2.5	 Writing and Executing First Python

Program  42
	 2.6	 Value and Types  43
	 2.7	 Numbers  43

Problem Solving and Programming with Python_2e_6th Revised.indb 10 15-05-2019 20:02:18

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

xiDetailed Contents

Annexure 3 — Comparison between
Python 2.x and Python 3.x
Versions  85

Annexure 4 — Testing and Debugging  88

	 3.	 Control Flow Statements   95

	 3.1	 Introduction to Decision Control
Statements  95

	 3.2	 Selection/Conditional Branching
Statements  96
	 3.2.1	 if Statement  96
	 3.2.2	 if-else Statement  97
	 3.2.3	 Nested if Statements  100
	 3.2.4	 if-elif-else Statement  100

	 3.3	 Basic Loop Structures/ Iterative
Statements  105
	 3.3.1	 while loop  106
	 3.3.2	 for Loop  113
	 3.3.3	 Selecting an appropriate

loop  115
	 3.4	 Nested Loops  122
	 3.5	 The break Statement  125
	 3.6	 The continue Statement  126
	 3.7	 The pass Statement  129
	 3.8	 The else Statement Used with

Loops  130
Case Study 1 — Simple Calculator  140
Case Study 2 — Generating

a Calendar  143

	 4.	 Functions  145

	 4.1	 Introduction  145
	 4.1.1	 Need for Functions  146

	 4.2	� Defining a Function  147
	 4.3	 Function Call  148

	 4.3.1	 Function Parameters  148
	 4.4	 Variable Scope and Lifetime  151

	 4.4.1	 Local and Global Variables  151
	 4.4.2	 Using the Global Statement  152
	 4.4.3	 Resolution of Names  155

	 4.5	 Fruitful Functions  155
	 4.5.1	 The return Statement  155
	 4.5.2	 Parameters  157

	 4.6	 Lambda Functions or
Anonymous Functions  161

	 4.7	 Function Composition in Python  164

	 4.8	 Documentation Strings  165
	 4.9	 Good Programming Practices  166
	4.10	 Recursive Functions  171

	4.10.1	 Greatest Common Divisor  173
	4.10.2	 Finding Exponents  173
	4.10.3	 The Fibonacci Series  174
	4.10.4	 Recursion vs Iteration  177

	4.11	 Function Redefinition  179
Annexure 5 — Functions as Objects  187
Case Study 3 — Shuffling a Deck of

Cards  189

	 5.	 Strings   190

	 5.1	 Concatenating, Appending, and
Multiplying Strings  191

	 5.2	 Strings are Immutable  193
	 5.3	 String Formatting Operator  194
	 5.4	 Built-in String Methods and

Functions  197
	 5.5	 Slice Operation  202

	 5.5.1	 Specifying Stride While Slicing
Strings  204

	 5.6	 ord() and chr() Functions  205
	 5.7	 in and not in operators  205
	 5.8	 Comparing Strings  206
	 5.9	 Iterating String  207
	5.10	 The String Module  213
	5.11	 Metacharacters in Regular

Expression  216
	5.11.1	 Character Classes  218
	5.11.2	 Groups  220
	5.11.3	 Application of Regular Expression

to Extract Email  221

	 6.	 Lists, Tuples, and Dictionaries  233

	 6.1	 Sequence  233
	 6.2	 Lists  233

	 6.2.1	 Access Values in Lists  234
	 6.2.2	 Updating Values in Lists  234
	 6.2.3	 Nested Lists  236
	 6.2.4	 Aliasing  237
	 6.2.5	 Cloning Lists  237
	 6.2.6	 List Parameters  238
	 6.2.7	 Basic List Operations  238
	 6.2.8	 List Methods  239
	 6.2.9	 Lists as Arrays  242

Problem Solving and Programming with Python_2e_6th Revised.indb 11 15-05-2019 20:02:18

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

xii Detailed Contents

	6.5.13	 List vs Tuple vs Dictionary vs
Set  286

	 7.	 File Handling	 303

	 7.1	 Introduction  303
	 7.2	 File Path  303
	 7.3	 Types of Files  304

	 7.3.1	 ASCII Text Files  305
	 7.3.2	 Binary Files  305

	 7.4	 Opening and Closing Files  306
	 7.4.1	 The open() Function  306
	 7.4.2	 The File Object Attributes  307
	 7.4.3	 The close() Method  308

	 7.5	 Reading and Writing Files  309
	 7.5.1	 write() and writelines()

Methods  309
	 7.5.2	 append() Method  309
	 7.5.3	 The read() and readline()

Methods  310
	 7.5.4	 Opening Files using with

Keyword  312
	 7.5.5	 Splitting Words  313
	 7.5.6	 Some Other Useful File

Methods  314
	 7.6	 File Positions  314
	 7.7	 % (String Formatting Operator)	 317
	 7.8	 Command Line Arguments  319
	 7.9	 Renaming and Deleting Files  320
	7.10	 Directory Methods  321

	7.10.1	 Methods from the os
Module  324

Case Study 4 — Creating a Hash File (or a
message digest of a file)  334

Case Study 5 — Mail Merge Program  336
Case Study 6 — Finding Resolution of an

Image  338

	 8.	 Error and Exception Handling,
Modules, and Packages	 339

	 8.1	 Introduction to Errors and
Exceptions  339
	 8.1.1	 Syntax Errors  339
	 8.1.2	 Logic Error  340
	 8.1.3	 Exceptions  340

	 8.2	 Handling Exceptions  341
	 8.3	 Multiple Except Blocks  342

	6.2.10	 Advanced List Processing  244
	6.2.11	 Looping in Lists  245

	 6.3	 Functional Programming  247
	 6.3.1	 filter() Function  247
	 6.3.2	 map() Function  248
	 6.3.3	 reduce() Function  249

	 6.4	 Tuple  261
	 6.4.1	 Creating Tuple  261
	 6.4.2	 Utility of Tuples  262
	 6.4.3	 Accessing Values in

a Tuple  263
	 6.4.4	 Updating Tuple  263
	 6.4.5	 Deleting Elements in Tuple  264
	 6.4.6	 Basic Tuple Operations  264
	 6.4.7	 Tuple Assignment  265
	 6.4.8	 Tuples for Returning Multiple

Values  266
	 6.4.9	 Nested Tuples  266
	6.4.10	 Checking the Index: index()

method  267
	6.4.11	 Counting the Elements: count()

Method  268
	6.4.12	 List Comprehension and

Tuples  268
	6.4.13	 Variable-length Argument

Tuples  269
	6.4.14	 The zip() Function  270
	6.4.15	 Advantages of Tuple over

List  272
	 6.5	 Dictionaries  275

	 6.5.1	 Creating a Dictionary  275
	 6.5.2	 Accessing Values  277
	 6.5.3	 Adding and Modifying an Item in

a Dictionary  277
	 6.5.4	 Modifying an Entry  278
	 6.5.5	 Deleting Items  278
	 6.5.6	 Sorting Items in a

Dictionary  281
	 6.5.7	 Looping over a Dictionary  281
	 6.5.8	 Nested Dictionaries  282
	 6.5.9	 Built-in Dictionary Functions and

Methods  282
	6.5.10	 Difference between a List and a

Dictionary  285
	6.5.11	 String Formatting with

Dictionaries  285
	6.5.12	 When to use which Data

Structure?  286

Problem Solving and Programming with Python_2e_6th Revised.indb 12 15-05-2019 20:02:18

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

xiiiDetailed Contents

	8.13	 Modules  353
	8.13.1	 The from…import statement  354
	8.13.2	 Name of Module  355
	8.13.3	 Making your own Modules  355
	8.13.4	 The dir() function  357
	8.13.5	 The Python Module  358
	8.13.6	 Modules and Namespaces  358

	8.14	 Packages in Python  360
	8.15	 Standard Library Modules  362
Annexure 6 — Classes and Objects  369
Case Study 7 — Compressing String and

Files  381

	 8.4	 Multiple Exceptions in a
Single Block  343

	 8.5	 Except Block Without Exception  343
	 8.6	 The else clause  344
	 8.7	 Raising Exceptions  345
	 8.8	 Instantiating Exceptions  345
	 8.9	 Handling Exceptions in Invoked

Functions  346
	8.10	 Built-in and User-Defined

Exceptions  348
	8.11	 The try... finally Block  349
	8.12	 Pre-defined Clean–up Action  351

Appendix A — Lab Exercises  384
Appendix B — GUI Programming with tkinter Package  407
Appendix C — Simple Graphics using Turtle  417
Appendix D — Plotting Graphs in Python  423
Solved Question Paper (2018/19)  429
Solved Question Paper (2017/18)  444
Solved Model Question Paper - 1  461
Solved Model Question Paper - 2  463
About the Author  465

Problem Solving and Programming with Python_2e_6th Revised.indb 13 15-05-2019 20:02:18

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

1.1  INTRODUCTION
A program is a set of instructions that tells the computer how to solve a particular problem. Various program
design tools like algorithms, pseudocdes and flowcharts are used to design the blueprint of the solution
(or the program to be written). Computer programming goes a step further in problem solving process.
Programming means writing computer programs. While programming, the programmers take an algorithm
and code the instructions in a particular programming language so that it can be executed by a computer.
These days, there are many programming languages available in the market. The programmer can choose any
language depending on his expertise and the problem domain.

The following sections will deal with different program design tools, knowledge of which is compulsory
to develop programming skills.

1.2  ALGORITHMS
In computing, we focus on the type of problems categorically known as algorithmic problems, where their
solutions are expressible in the form of algorithms. The term ‘algorithm’ was derived from the name of
Mohammed al-Khwarizmi, a Persian mathematician in the nineth century (Al-Khwarizmi → Algorism
(in Latin) → Algorithm). The typical meaning of an algorithm is a formally defined procedure for performing
some calculation. If a procedure is formally defined, then it must be implemented using some formal language,
and such languages are known as programming languages. The algorithm gives the logic of the program, that
is, a step-by-step description of how to arrive at a solution.

In general terms, an algorithm provides a blueprint to writing a program to solve a particular problem. It
is considered to be an effective procedure for solving a problem in a finite number of steps. That is, a well-
defined algorithm always provides an answer, and is guaranteed to terminate.

Algorithms are mainly used to achieve software reuse. Once we have an idea or a blueprint of a solution,
we can implement it in any language, such as C, C++, Java, and so on. In order to qualify as an algorithm, a
sequence of instructions must possess the following characteristics:

•	 Precision: The instructions should be written in a precise manner.
•	 Uniqueness: The outputs of each step should be unambiguous, i.e., they should be unique and only depend

on the input and the output of the preceding steps.
•	 Finiteness: Not even a single instruction must be repeated infinitely.

Algorithmic
Problem Solving

• Algorithm • Flowchart • Pseudocode • Iteration • Recursion
• Illustrative Examples

CHAPTER

1

Problem Solving and Programming with Python_2e_6th Revised.indb 1 15-05-2019 20:02:18

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

2 Problem Solving and Programming with Python

•	 Effectiveness: The algorithm should designed in such a way that it should be the most effective among
many different ways to solve a problem.

•	 Input: The algorithm must receive an input.
•	 Output: After the algorithm gets terminated, the desired result must be obtained.
•	 Generality: The algorithm can be applied to various set of inputs.

1.3  �BUILDING BLOCKS OF ALGORITHM (INSTRUCTIONS, STATE,
CONTROL FLOW, FUNCTIONS)

An algorithm starts from an initial state with some input. The instructions/statements describe the processing
that must be done on the input to produce the final output (the final state). Note that an instruction is a single
operation which when executed converts one state to other.

In the course of processing, data is read from an input device, stored in computer’s memory for further
processing, and then the result of the processing is written to an output device.

The data is stored in the computer’s memory in the form of variables or constants. The state of an algorithm
is defined as its condition regarding current values or contents of the stored data.

An algorithm is a list of precise steps and the order of steps determines the functioning of the algorithm.
The flow of control (or the control flow) of an algorithm can be specified as top-down or bottom-up approach.
Thus, the flow of control specifies the order in which individual instructions of an algorithm are executed.

1.3.1  Subcharts/Subroutine/Predefined Process
A subroutine (or procedure or function or routine) is a sequence of instructions that performs a specific
task. These instructions are packaged as a single unit and can be used (or invoked or called) wherever that
particular task needs to be performed. After performing its defined task, the sub-routine branches back (or
returns) to the next instruction after the one that invoked it.

A subroutine may be designed to accept one or more data values (also known as parameters) from the
calling code. It may also return a value to its caller. A subroutine can also be written in such a way that it
calls itself repeatedly.

The subroutine symbol is used to write steps for procedures. These procedures can be called from
anywhere in the code. This means that once the flowchart for a process is drawn, it can be referenced and
used from anywhere in the code.

1.4  ALGORITHMIC PROBLEM SOLVING STEPS
As mentioned earlier, algorithms are solutions to problems. They are not solutions themselves. They just
list specific instructions that need to be performed for getting the solution. In computer science, emphasis
is laid on writing a good and effective algorithm and this emphasis makes computer science distinct from
other disciplines. For example, computer science is distinct from theoretical mathematics because those
practitioners are typically satisfied with just proving the existence of a solution to a problem but in computer
science, the problem is not solved until the algorithm is used to implement the solution.

We will now discuss about the sequence of steps one must typically follow for designing an effective
algorithm.

1.	 Understanding the problem
2.	 Determining the capabilities of the computational device
3.	 Exact/approximate solution
4.	 Select the appropriate data structure
5.	 Algorithm design techniques
6.	 Methods of specifying an algorithm

Problem Solving and Programming with Python_2e_6th Revised.indb 2 15-05-2019 20:02:18

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

3Algorithmic Problem Solving

7.	 Proving an algorithms correctness
8.	 Analysing the performance of an algorithm

Understanding the problem  The problem given should be clearly and completely understood. It is
compared with earlier problems that have already been solved to check if it is similar to them and a known
algorithm exists. If the algorithm is available, it is used, otherwise a new one has to be developed.
Determining the capabilities of the computational device  After understanding the problem, the
capabilities of the computing device should be known. For this, the type of the architecture, speed and
memory availability of the device are noted.
Exact/approximate solution  The next step is to develop the algorithm. The algorithm must compute
correct output for all possible and legitimate inputs. This solution can be an exact solution or an approximate
solution. For example, you can only have an approximate solution in case of finding square root of number
or finding the solutions of non-linear equations.
Select the appropriate data structure  A data type is a well-defined collection of data with a well-
defined set of operations on it. A data structure is basically a group of data elements that are put together
under one name, and which defines a particular way of storing and organizing data in a computer so that it
can be used efficiently. The elementary data structures are as follows.

•	 List: Allows fast access of data.
•	 Sets: Treats data as elements of a set. Allows application of operations such as intersection, union, and

equivalence.
•	 Dictionaries: Allows data to be stored as a key-value pair.

Algorithm design techniques  Developing an algorithm is an art which may never be fully automated.
By mastering the design techniques, it will become easier for you to develop new and useful algorithms.
Examples of algorithm design techniques include dynamic programming.
Methods of specifying an algorithm  An algorithm is just a sequence of steps or instructions that can
be used to implement a solution. After writing the algorithm, it is specified either using a natural language or
with the help of pseudocode and flowcharts. We will read about them in the next section.
Proving algorithms correctness  Writing an algorithm is not just enough. You need to prove that it
computes solutions for all the possible valid inputs. This process is often referred to as algorithm validation.
Algorithm validation ensures that the algorithm will work correctly irrespective of the programming language
in which it will be implemented.
Analysing the performance of algorithms  When an algorithm is executed, it uses the computer’s resources
like the Central Processing Unit (CPU) to perform its operation and to hold the program and data respectively. An
algorithm is analysed to measure its performance in terms of CPU time and memory space required to execute that
algorithm. This is a challenging task and is often used to compare different algorithms for a particular problem. The
result of the comparison helps us to choose the best solution from all possible solutions. Analysis of the algorithm
also helps us to determine whether the algorithm will be able to meet any efficiency constraint that exits or not.

1.5  �SIMPLE STRATEGIES AND NOTATIONS FOR
DEVELOPING ALGORITHMS

An algorithm is a step–by–step procedure for solving a task or problem. However, these steps must be
ordered, unambiguous and finite in number. Basically, an algorithm is nothing but English-like representation
of logic which is used to solve the problem.

For accomplishing a particular task, different algorithms can be written. The different algorithms differ in
their requirements of CPU time and memory space. The programmer selects the best suited algorithm for the
given task to be solved.

Problem Solving and Programming with Python_2e_6th Revised.indb 3 15-05-2019 20:02:18

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

4 Problem Solving and Programming with Python

Step 1 : Start
Step 2 : Input first number as A
Step 3 : Input second number as B
Step 4 : Set Sum = A + B
Step 5 : Print Sum
Step 6 : End

Example 1.1	 Algorithm to add two numbers

Step 1 : Start
Step 2 : Input first number as A
Step 3 : Input second number as B
Step 4 : IF A = B
			  Print "Equal"
			 ELSE
			  Print "Not equal" [END of IF]
Step 5 : End

Example 1.2	 Algorithm to test the quality of two numbers

Decision  Decision statements are used when the outcome of the process depends on some condition. For
example, if x = y, then print "EQUAL". Hence, the general form of the if construct can be given as follows:

IF condition then process

A condition in this context is any statement that may evaluate either to a true value or a false value. In the
preceding example, the variable x can either be equal or not equal to y. However, it cannot be both true and
false. If the condition is true then the process is executed.

A decision statement can also be stated in the following manner:

IF condition
   then process1
ELSE process2

This form is commonly known as the if-else construct. Here, if the condition is true then process1 is
executed, else process2 is executed. An algorithm to check the equality of two numbers is shown below.

Various strategies and notations used for developing and designing algorithms are discussed in the
following sections.

1.5.1  Control Structures Used in Algorithms
An algorithm has a finite number of steps and some steps may involve decision making and repetition. Broadly
speaking, an algorithm may employ three control structures, namely, sequence, decision, and repetition.
Sequence  Sequence means that each step of the algorithm is executed in the specified order. An algorithm
to add two numbers is given as follows. This algorithm performs the steps in a purely sequential order.

Problem Solving and Programming with Python_2e_6th Revised.indb 4 15-05-2019 20:02:18

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

5Algorithmic Problem Solving

Step 1: Start
Step 2: Read the three numbers A,B,C
Step 3: Compare A and B. If A is greater perform step 4 else perform step 5.
Step 4: �Compare A and C. If A is greater, output "A is greatest" else output "C is

greatest"
Step 5: �Compare B and C. If B is greater, output "B is greatest" else output "C is

greatest"
Step 6: End

Example 1.3	 Algorithm to find the greatest of three numbers

Let us look at the following two simple algorithms to find the greatest among three numbers.

Both the algorithms given in Examples 1.3 and 1.4 accomplish same goal, but in different ways. The
programmer selects the algorithm based on the advantages and disadvantages of each algorithm. For example,
the first algorithm has more number of comparisons, whereas in the second algorithm an additional variable
MAX is used to do the comparison.
Iteration or repetition  which involves executing one or more steps for a number of times, can be
implemented using constructs such as the while loops and for loops. These loops execute one or more steps
until some condition is true.

Step 1: Start
Step 2: Read the three numbers A,B,C
Step 3: Compare A and B. If A is greater, store Ain MAX, else store B in MAX
Step 4: �Compare MAX and C. If MAX is greater, output "MAX is greater" else output

"C is greater"
Step 5: End

Example 1.4	 Algorithm to find the greatest of three numbers using an additional variable MAX

Step 1: Start
Step 2: [initialize] Set I = 1, N = 10
Step 3: Repeat Steps 3 and 4 while I <= N
Step 4: Print I
Step 5: Set I = I + 1 [END OF LOOP]
Step 6: End

Example 1.5	 Algorithm that prints the first 10 natural numbers

Step 1: Start
Step 2: sum = 0
Step 3: Get a value

Example 1.6	 Design an algorithm for adding the test scores given as: 26, 49, 98, 87, 62, 75.

Problem Solving and Programming with Python_2e_6th Revised.indb 5 15-05-2019 20:02:18

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

6 Problem Solving and Programming with Python

Examples 1.5 and 1.6 demonstrate the application of repetition and iteration logic in an algorithm.
Some more examples to depict the concept of control structures in algorithms are given as follows.

Step 1: Start
Step 2: Input first number as A
Step 3: Input second number as B
Step 4: Set temp = A
Step 5: Set A = B
Step 6: Set B = temp
Step 7: Print A, B
Step 8: End

Example 1.7	 Write an algorithm for interchanging/swapping two values.

Step 1: Start
Step 2: Input first number as A
Step 3: Input second number as B
Step 4: IF A > B
 Print A
 ELSE IF A < B
 Print B
 ELSE
 Print "The numbers are equal"
 [END OF IF]
Step 5: End

Example 1.8	 Write an algorithm to find the larger of two numbers.

Step 1: Start
Step 2: Input number as A
Step 3: IF A % 2 = 0
 Print "Even"
 ELSE
 Print "Odd"
 [END OF IF]
Step 4: End

Example 1.9	 Write an algorithm to find whether a number is even or odd.

Step 4: sum = sum + value
Step 5: If next value is present, go to step 3. Otherwise, go to step 6
Step 6: Print the sum
Step 7: End

Problem Solving and Programming with Python_2e_6th Revised.indb 6 15-05-2019 20:02:19

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

7Algorithmic Problem Solving

Example 1.10	 Write an algorithm to print the grade obtained by a student using the following rules:

Marks Grade
Above 75 O
60-75 A
50-60 B
40-50 C
Less than 40 D

Step 1: Start
Step 2: Enter the marks obtained as M
Step 3: IF M > 75
 Print "O"
Step 3: IF M >= 60 and M < 75
 Print "A"
Step 4: IF M >= 50 and M < 60
 Print "B"
Step 5: IF M >= 40 and M < 50
 Print "C"
 ELSE
 Print "D"
 [END OF IF]
Step 6: End

Step 1: Start
Step 2: Input N
Step 3: Set I = 1, sum = 0
Step 4: Repeat Steps 4 and 5 while I <= N
Step 5: Set sum = sum + I
Step 6: Set I = I + 1
 [END OF LOOP]
Step 7: Print sum
Step 8: End

Example 1.11	 Write an algorithm to find the sum of first N natural numbers.

Recursion  It is a technique of solving a problem by breaking it down into smaller and smaller sub-problems
until you get to a small enough problem that it can be easily solved. Usually, recursion involves a function
calling itself until a specified condition is met. Since a recursive function repeatedly calls itself, it makes use
of the system stack to temporarily store the return address and local variables of the calling function. Every
recursive solution has two major cases. They are:

•	 Base case, in which the problem is simple enough to be solved directly without making any further calls
to the same function.

Problem Solving and Programming with Python_2e_6th Revised.indb 7 15-05-2019 20:02:19

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

8 Problem Solving and Programming with Python

Step 1: Start
Step 2: Input number as n
Step 3: Call factorial(n)
Step 4: End

factorial(n)
Step 1: Set f = 1
Step 2: IF n==1 then return 1
		  ELSE
		   Set f=n*factorial(n-1)
Step 3: Print f

Example 1.12	 Write a recursive algorithm to find the factorial of a number.

1.5.2  Flowcharts
A flowchart is a graphical or symbolic
representation of a process. It is basically used
to design and document virtually complex
processes to help the viewers to visualize the
logic of the process, so that they can gain a better
understanding of the process and find flaws,
bottlenecks, and other less obvious features
within it.

When designing a flowchart, each step in the
process is depicted by a different symbol and is
associated with a short description. The symbols
in the flowchart (refer Figure 1.1) are linked together with arrows to show the flow of logic in the process.

The symbols used in a flowchart include the following:

•	 Start and end symbols are also known as the terminal symbols and are represented as circles, ovals, or
rounded rectangles. Terminal symbols are always the first and the last symbols in a flowchart.

•	 Arrows depict the flow of control of the program. They illustrate the exact sequence in which the instructions
are executed.

•	 Generic processing step, also called as an activity, is represented using a rectangle. Activities include
instructions such as add a to b or save the result. Therefore, a processing symbol represents arithmetic and
data movement instructions. When more than one process has to be executed simultaneously, they can
be placed in the same processing box. However, their execution will be carried out in the order of their
appearance.

Figure 1.1  Symbols used in a Flowchart

Start or End
symbol

Input/Output
symbol

Decision symbol

Connector

Arrows

Processing step

Pre-defined Process (Subroutine)

•	 Recursive case, in which first the problem at hand is divided into simpler sub-parts. Second the function
calls itself but with sub-parts of the problem obtained in the first step. Third, the result is obtained by com-
bining the solutions of simpler sub-parts.

Therefore, recursion is defining large and complex problems in terms of smaller and more easily solvable
problems. In recursive functions, a complex problem is defined in terms of simpler problems and the simplest
problem is given explicitly.

(For a detailed study on Recursion and Iteration, refer to Chapter 4)

Problem Solving and Programming with Python_2e_6th Revised.indb 8 15-05-2019 20:02:19

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

9Algorithmic Problem Solving

•	 Input/Output symbols are represented using a parallelogram and are used to get inputs from the users or
display the results to them.

•	 A conditional or decision symbol is represented using a diamond. It is basically used to depict a Yes/No
question or a True/False test. The two symbols coming out of it, one from the bottom point and the other
from the right point, corresponds to Yes or True, and No or False, respectively. The arrows should always
be labelled. A decision symbol in a flowchart can have more than two arrows, which indicates that a
complex decision is being taken.

•	 Labelled connectors are represented by an identifying label inside a circle and are used in complex or
multi-sheet diagrams to substitute for arrows. For each label, the ‘outflow’ connector must have one or
more ‘inflow’ connectors. A pair of identically labelled connectors is used to indicate a continued flow
when the use of lines becomes confusing.

•	 A pre-defined process symbol is a marker for another process step or series of process flow steps that are formally
defined elsewhere. This shape commonly depicts sub-processes (or subroutines in programming flowcharts).

Significance of Flowcharts
A flowchart is a diagrammatic representation that illustrates the sequence of steps that must be performed
to solve a problem. It is usually drawn in the early stages of formulating computer solutions. It facilitates
communication between programmers and users. Once a flowchart is drawn, programmers can make users
understand the solution easily and clearly.

Flowcharts are very important in the programming of a problem as they help the programmers to
understand the logic of complicated and lengthy problems. Once a flowchart is drawn, it becomes easy for the
programmers to write the program in any high-level language. Hence, the flowchart has become a necessity
for better documentation of complex programs.

A flowchart follows the top-down approach in solving problems. Some examples are given as follows.

START

Set I = 1
Set SUM = 0

Set SUM = SUM + 1
Set I = I + 1

Is I = 10?

Display SUM

STOP

YES

NO

Example 1.13	 �Draw a flowchart to calculate the
sum of the first 10 natural numbers.

START

Calculate SUM = A + B

Print SUM

Read the values
of A and B

STOP

Example 1.14	 �Draw a flowchart to add two
numbers.

Problem Solving and Programming with Python_2e_6th Revised.indb 9 15-05-2019 20:02:19

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

10 Problem Solving and Programming with Python

START

Calculate SALARY=(no_of_hr x
pay_per_hr) + travel_allowance

Print SALARY

SALARY Input the
no_of_hrs, pay_per_hr,
and travel_allowance

STOP

Example 1.15	 �Draw a flowchart to
calculate the salary of
a daily wager.

START

Print B

Print C

Print C

Print A

Is A > B? NO NO

NO

YES

YES

YES

STOP

Read the
values of

A, B, and C

Is B > C?

Is A > C?

Example 1.16	 �Draw a flowchart to determine the largest of
three numbers.

Advantages
•	 They are very good communication tools to explain the logic of a system to all concerned. They help to

analyse the problem in a more effective manner.
•	 They are also used for program documentation. They are even more helpful in the case of complex

programs.
•	 They act as a guide or blueprint for the programmers to code the solution in any programming language.

They direct the programmers to go from the starting point of the program to the ending point without
missing any step in between. This results in error-free programs.

•	 They can be used to debug programs that have error(s). They help the programmers to easily detect, locate,
and remove mistakes in the program in a systematic manner.

Limitations
•	 Drawing flowcharts is a laborious and a time-consuming activity. Just imagine the effort required to draw

a flowchart of a program having 50,000 statements in it!
•	 Many a times, the flowchart of a complex program becomes complex and clumsy.
•	 At times, a little bit of alteration in the solution may require complete redrawing of the flowchart.
•	 The essentials of what is done may get lost in the technical details of how it is done.
•	 There are no well-defined standards that limit the details that must be incorporated into a flowchart.

1.5.3  Pseudocodes
Pseudocode is a compact and informal high-level description of an algorithm that uses the structural
conventions of a programming language. It facilitates designers to focus on the logic of the algorithm without
getting bogged down by the details of language syntax. An ideal pseudocode must be complete, describing
the entire logic of the algorithm, so that it can be translated straightaway into a programming language.

Problem Solving and Programming with Python_2e_6th Revised.indb 10 15-05-2019 20:02:20

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

11Algorithmic Problem Solving

It is basically meant for human reading rather than machine reading, so it omits the details that are not
essential for humans. Such details include variable declarations, system-specific code, and subroutines.

Pseudocodes are an outline of a program that can easily be converted into programming statements. They
consist of short English phrases that explain specific tasks within a program’s algorithm. They should not
include keywords in any specific computer language.

The sole purpose of pseudocodes is to enhance human understandability of the solution. They are commonly
used in textbooks and scientific publications for documenting algorithms, and for sketching out the program
structure before the actual coding is done. This helps even non-programmers to understand the logic of the designed
solution. There are no standards defined for writing a pseudocode, because a pseudocode is not an executable
program. Flowcharts can be considered as graphical alternatives to pseudocodes, but require more space on paper.

1.	Start
2.	Read the price of the product
3.	Read the sales tax rate
4.	Calculate sales tax = price of the item x * sales tax rate
5.	Calculate total price = price of the product + sales tax
6.	Print total price
7.	End

Variables: price of the item, sales tax rate, sales tax, total price

Example 1.17	 �Write a pseudocode for calculating the price of a product after adding the sales tax to
its original price.

1.	Start
2.	Read hours worked
3.	Read wages per hour
4.	Set overtime charges to 0
5.	Set overtime hrs to 0
6.	IF hours worked > 30 then
	 a.	Calculate overtime hrs = hours worked - 30
	 b.	Calculate overtime charges = overtime hrs * (2 * wages per hour)
	 c.	Set hours worked = hours worked - overtime hrs
	 ENDIF
7.	Calculate salary = (hours worked x wages per hour) + overtime charges
8.	Display salary
9.	End

Variables: hours worked, wages per hour, overtime charges, overtime hrs, salary

Example 1.18	 �Write a pseudocode to calculate the weekly wages of an employee. The pay depends
on wages per hour and the number of hours worked. Moreover, if the employee has
worked for more than 30 hours, then he or she gets twice the wages per hour, for every
extra hour that he or she has worked.

Example 1.19	 �Write a pseudocode to read the marks of 10 students. If marks is greater than 50, the
student passes, else the student fails. Count the number of students passing and failing.

Problem Solving and Programming with Python_2e_6th Revised.indb 11 15-05-2019 20:02:20

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

12 Problem Solving and Programming with Python

1.5.4  Programming Languages
A programming language is a language specifically designed to express computations that can be performed
by a computer. Programming languages are used to create programs that control the behaviour of a system,
to express algorithms, or as a mode of human communication.

Usually, programming languages have a vocabulary of syntax and semantics for instructing a computer
to perform specific tasks. The term programming language refers to high-level languages such as BASIC
(Beginners’ All-purpose Symbolic Instruction Code), C, C++, COBOL (Common Business Oriented Language),
FORTRAN (Formula Translator), Python, Ada, and Pascal, to name a few. Each of these languages has a unique
set of keywords (words that it understands) and a special syntax for organizing program instructions.

Though high-level programming languages are easy for humans to read and understand, the computer can
understand only machine language, which consists of only numbers. Each type of central processing unit
(CPU) has its own unique machine language.

In between machine languages and high-level languages, there is another type of language known as
assembly language. Assembly languages are similar to machine languages, but they are much easier to
program because they allow a programmer to substitute names for numbers.

However, irrespective of the language that a programmer uses, a program written using any programming
language has to be converted into machine language so that the computer can understand it. There are two
ways to do this: compile the program or interpret the program.

When planning a software solution, the software development team often faces a common question—
which programming language to use? Many programming languages are available today and each one has
its own strengths and weaknesses. Python can be used to write an efficient code, whereas a code in BASIC is
easy to write and understand; some languages are compiled, whereas others are interpreted; some languages
are well known to the programmers, whereas others are completely new. Selecting the perfect language for a
particular application at hand is a daunting task.

The selection of language for writing a program depends on the following factors:
•	 The type of computer hardware and software on which the program is to be executed.
•	 The type of program.
•	 The expertise and availability of the programmers.
•	 Features to write the application.
•	 The built-in features that support the development of software that are reliable and less prone to crash.
•	 Lower development and maintenance costs.
•	 Stability and capability to support even more than the expected simultaneous users.

1. Start
2. Set pass to 0
3. Set fail to 0
4. Set no of students to 1
5. WHILE no of students < 10
	 a. input the marks
	 b. IF marks >= 50 then
	    Set pass = pass + 1
	 ELSE
	    Set fail = fail + 1
	 ENDIF
	 ENDWHILE
6. Display pass
7. Display fail
8. End
Variables: pass, fail, no of students, marks

Problem Solving and Programming with Python_2e_6th Revised.indb 12 15-05-2019 20:02:20

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

13Algorithmic Problem Solving

•	 Elasticity of a language that implies the ease with which new features (or functions) can be added to the
existing program.

•	 Portability.
•	 Better speed of development that includes the time it takes to write a code, time taken to find a solution to

the problem at hand, time taken to find the bugs, availability of development tools, experience and skill of
the programmers, and testing regime.
For example, FORTRAN is a particularly good language for processing numerical data, but it does

not lend itself very well to organizing large programs. Pascal can be used for writing well-structured and
readable programs, but it is not as flexible as the C programming language. C++ goes one step ahead of C by
incorporating powerful object oriented features, but it is complex and difficult to learn. Python, however is a
good mix of the best features of all these languages.

1.6  ILLUSTRATIVE PROBLEMS
In this section, we will look into some common problems in computer science and will specify its solution by
writing an algorithm and pseudocode, and drawing its corresponding flowchart.

1.6.1  Find Minimum in a List
Consider the following requirement specification.

You are given a list of numbers from which you are supposed to find the minimum value. An algorithm is
required for entering the numbers in the list and then calculate the minimum value. The count of numbers to
be entered in the list should also be asked from the user.

Before writing the algorithm, just visualize how it works. Take the first number in the list and call
it minimum. Compare the minimum’s value with all other values in the list one by one. The moment
you find a smaller element than the minimum, call it the minimum. Figure 1.2 given below illustrates
this concept.

Figure 1.2  Finding minimum value in a list

3

Let MIN = 3, Compare MIN with every element in the list one by one.

MIN < 5, so no change

MIN < 9, so no change

MIN < 1, so set MIN = 1

MIN < 4, so no change

MIN < 7, so no change

MIN < 2, so no change

MIN < 6, so no change

5 9

3 5 9

3 5 9

1 4 7

1 4 7

2 6

2 6

1 4 7 2 6

3 5 9 1 4 7 2 6

3 5 9 1 4 7 2 6

3 5 9 1 4 7 2 6

3 5 9

3 5 9

1 4

1 4

7 2 6

7 2 6

Problem Solving and Programming with Python_2e_6th Revised.indb 13 15-05-2019 20:02:20

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

14 Problem Solving and Programming with Python

Step 1:	 Start
Step 2:	 READ the count of numbers as N
Step 3:	 SET I = 0
Step 4:	 READ the first element as MIN
Step 5:	 REPEAT Steps 6-8 WHILE I < N – 1
Step 6:	 READ the next number as NUM
Step 7:	 IF MIN < NUM
				 SET MIN = NUM
Step 8:	 SET I = I + 1
Step 9:	 PRINT MIN
Step 10:	 End

Algorithm 1.1

Flowchart 1.1

Start

Read the count
of numbers as N

Read the first
element as MIN

Read the next
number as NUM

Print MIN
NO

NO

YES

YES

Stop

Is I < N - 1?

Is MIN < NUM?

SET MIN = NUM

SET I = I + 1

SET I = 0

The step-wise approach for solving the problem of finding the minimum in a list is demonstrated through
Algorithm 1.1, Flowchart 1.1, and Pseudocode 1.1.

Problem Solving and Programming with Python_2e_6th Revised.indb 14 15-05-2019 20:02:20

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

15Algorithmic Problem Solving

1.6.2  Insert a Card in a List of Sorted Cards
Inserting a card in a list of sorted cards is same as inserting an element into a sorted list of numbers. For this,
start from the end of the list and compare the new element with the elements of the list to find a suitable
position at which the new element has to be inserted. While comparing, also shift the elements one step ahead
to create a vacancy for the new element. Figure 1.3 given below illustrates this concept.

Position 0 1 2 3 4 5 Element To Be Inserted
Original List 4 6 9 10 11 7

7>11  × 4 6 9 10 11
7>10  × 4 6 9 10 11
7>9  × 4 6 9 10 11
7>6  √ 4 6 7 9 10 11

Figure 1.3  Inserting a number in a sorted list

Read the count of numbers as N
Set I = 0
Read the first element as MIN
While I < N – 1
	 Read the next number as NUM
		 IF MIN < NUM
			 Set MIN = NUM
		 Set I = I + 1
Print MIN		
End
Variables: I, N, NUM, MIN

Pseudocode 1.1

Step 1:	 Start
Step 2: 	 READ Number of elements in the sorted list as N
Step 3:	 SET I=0
Step 4:	 REPEAT Steps 5 and 6 WHILE I < N
Step 5:		 READ the Sorted list element as List[I]
Step 6:		 SET I = I + 1
Step 7:	 READ Element to be inserted as X
Step 8:	 SET I = N-1
Step 9:	 REPEAT Step 10 and 11 WHILE I >= 0 AND X<List[I]
Step 10:		 List[I+1] = List[I]
Step 11:		 SET I = I - 1
Step 12:	 List[I+1] = X
Step 13:	 End

Algorithm 1.2

The step-wise approach for solving the problem of inserting a card in a list of sorted cards is represented
through Algorithm 1.2, Flowchart 1.2, and Pseudocode 1.2.

Problem Solving and Programming with Python_2e_6th Revised.indb 15 15-05-2019 20:02:20

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

16 Problem Solving and Programming with Python

Start
Read Number of elements in the sorted list as N
Set I=0
WHILE I < N
	 Read the Sorted list element as List[I]
	 Set I = I + 1
Read element to be inserted as X
Set I = N-1
WHILE I >= 0 AND X<List[I]
	 List[I+1] = List[I]
	 Set I = I - 1
List[I+1] = X
End

Pseudocode 1.2

Flowchart 1.2

Start

Stop

Read Number of
elements in the
sorted list as

NO

NO

YES

Is I < N?

SET I = 0

Read the sorted list
element as List[I]

Read Element to
be insert as X

SET I = N - 1

SET List[I] = X

SET List[I+1] = List[I]
SET I = I - 1

SET I = I + 1

Is I > 0 AND
X<List[I]?

Problem Solving and Programming with Python_2e_6th Revised.indb 16 15-05-2019 20:02:21

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

17Algorithmic Problem Solving

1.6.3  Guess an Integer Number in a Range
Let us play a game. While playing this game you will be able to appreciate how two different solutions to the
same problem can vary so much in terms of efficiency. The game is that the computer will randomly select
an integer from 1 to N and ask you to guess it. To help you guess the number correctly, the computer will tell
you if each guess is too high or too low. The good thing is that there is no limit on number of guesses. You
can make as many guess as you want to guess that number.

There are two ways to succeed in this game. First is the linear search and second is the binary search. In
linear search, you will guess the number as 1, then 2, then 3, then 4, and so on, until you guessed the right
number. So you are guessing all the numbers as if they were lined up in a row. This technique is fine but just
wonder how many guesses you would have to make. If the computer selects N, you would need N guesses. If
N is 1 then, of course, you will make it in the very first guess itself. Even if N is a small number like 5 or 10,
then it is still fine but just imagine what will be the number of guesses if N is a large number.

Now let us explore the binary search technique. Since the computer tells you whether a guess is too low,
too high, or correct, it is better to start by guessing N/2. If the number selected by the computer is less than
N/2, then using the computer’s information that the guess is too high, you can eliminate all the numbers from
N/2 to N in just one go. If the number selected by the computer is greater than N/2, then all elements from
1 through N/2 are eliminated right away. So with one guess you have narrowed down your possible guesses
by half. Isn’t that interesting and an intelligent move? Keep on cutting down the set of possible numbers by
half with every guess that you make.

While linear search technique required N guesses to win the game, binary search technique, on the other
hand, can make you win (or find the number) in at most log2N+1 guesses. The following table shows the
maximum number of guesses for linear search and binary search for a few number sizes:

VALUE OF N Max Linear Search Guesses Max Binary Search Guesses
10 10 4
100 100 7
1,000 1,000 10
10,000 10,000 14
100,000 100,000 17
1,000,000 1,000,000 20

Step 1: Start
Step 2: SET I = 0
Step 3: READ the range of numbers as N
Step 4: SET NUM as a randomly selected number from 1 to N
Step 5: READ VAL as a value guessed by the user
Step 6: SET I = I + 1
Step 7: IF VAL = NUM
		 THEN PRINT "YOU WIN... You guessed the number in Ith Turn"
		 Go to Step 10

Algorithm 1.3

The step-wise approach for solving the problem of guessing an integer number in a given range is
demonstrated through Algorithm 1.3, Flowchart 1.3, and Pseudocode 1.3.

Problem Solving and Programming with Python_2e_6th Revised.indb 17 15-05-2019 20:02:21

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

18 Problem Solving and Programming with Python

Step 8:	 IF VAL > NUM
		 THEN PRINT "VALUE TOO HIGH… PLAY AGAIN…."
		 Go to Step 5
Step 9: IF VAL < NUM
		 THEN PRINT "VALUE TOO LOW… PLAY AGAIN…."
		 Go to Step 5
Step 10: End

Flowchart 1.3

Start

Stop

SET I = 0

SET I = 1 +1

Read the range
of numbers as N

Read VAL as a value
guessed by the user

PRINT "VALUE
TOO HIGH...
PLAY AGAIN...."

PRINT "VALUE
TOO LOW...
PLAY AGAIN...."

PRINT "YOU WIN you
guessed the number
in Ith Turn"

SET NUM as a randomly
selected number from 1 to N

Is VAL = NUM?

Is VAL > NUM?

Problem Solving and Programming with Python_2e_6th Revised.indb 18 15-05-2019 20:02:21

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

19Algorithmic Problem Solving

1.6.4  Tower of Hanoi
The tower of Hanoi is one of the main applications of recursion. It says, ‘if you can solve n–1 cases, then you
can easily solve the nth case’.

We will discuss the tower of Hanoi problem using one, then two, and finally three rings. Figures 1.4(a) and
(b) explain the working of the tower of Hanoi problem using one and two rings.

Start
Set I = 0
Read the range of numbers as N
Set NUM as a randomly selected number from 1 to N
Read VAL as a value guessed by the user
Set I = I + 1
While VAL != NUM
IF VAL = NUM
		 THEN PRINT "YOU WIN... You guessed the number in Ith Turn"
		 Exit
ELSEIF VAL > NUM
		 THEN PRINT "VALUE TOO HIGH… PLAY AGAIN…."
	 ELSE
		 THEN PRINT "VALUE TOO LOW… PLAY AGAIN…."
End

Pseudocode 1.3

A B C

A B C

A B C

A B C

A B C

A B C

(Step 1) (Step 1) (Step 2)

(Step 2)
(If there is only one ring,

then simply move the ring
from source to the destination.)

(If there is two rings, then first move ring 1 to the spare
 pole and then move ring 2 from source to the destination.

Finally move ring 1 from spare to the destination.)

(Step 3) (Step 4)

	 (a)	 (b)

Figure 1.4  Working of tower of Hanoi problem using one and two rings

Now, consider at Figure 1.5 which shows three rings mounted on pole A. The problem is to move all these
rings from pole A to pole C while maintaining the same order. The main issue is that the smaller disk must
always come above the larger disk.

Rules of this problem include
•	 Only one disk can be moved among the towers at any given time.
•	 Only the “top” disk can be removed.
•	 No large disk can sit over a small disk.

Problem Solving and Programming with Python_2e_6th Revised.indb 19 15-05-2019 20:02:21

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

20 Problem Solving and Programming with Python

We will be solving this using a spare pole. In our case, A is the source pole, C is the destination pole, and B
is the spare pole. To transfer all the three rings from A to C, we will first shift the upper two rings (n–1 rings)
from the source pole to the spare pole (refer to Steps 1, 2 and 3 of Figure 1.5). Now that n–1 rings have been
removed from pole A, the nth ring can be easily moved from the source pole (A) to the destination pole (C)
(refer to Step 4 of Figure 1.5). The final step is to move the n–1 rings from the spare pole (B) as well as pole
(A) to the destination pole (C) (refer to Steps 5, 6, and 7 of Figure 1.5).

To summarize, the solution to our problem of moving n rings from A to C using B as spare can be given as:
Base case: If n=1
Move the ring from A to C using B as spare
Recursive case:
Move n – 1 rings from A to B using C as spare
Move the one ring left on A to C using B as spare
We can conclude that the steps to solve the tower of Hanoi problems are:
Step 1 − Move n-1 disks from source to the spare pole
Step 2 − Move nth disk from source to destination pole
Step 3 − Move n-1 disks from the spare pole to the destination pole

The step-wise approach for solving the problem of tower of Hanoi is demonstrated through Algorithm 1.4,
Flowchart 1.4, and Pseudocode 1.4.

Step 1: Begin
Step 2: IF disk = 1
				 THEN Go to step 3
		 ELSE
				 Go to step 4
Step 3: Move disk from source to dest and then Go to Step 7
Step 4: CALL Hanoi(disk-1, source, spare, dest)
Step 5: Move disk from source to dest
Step 6: CALL Hanoi(disk-1, spare, dest, source)
Step 7: End

Algorithm 1.4	 Hanoi(disk, source, dest, spare)

A

3 Disks
(1)

(2) (3) (4)

(5) (6) (7)

B C

A B C

A B C

A B C A B C

A B C

A B C A B C

Figure 1.5  Solving the Tower of Hanoi problem

Problem Solving and Programming with Python_2e_6th Revised.indb 20 15-05-2019 20:02:21

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

21Algorithmic Problem Solving

Flowchart 1.4

Begin Procedure Hanoi(disk, source, dest, spare)
IF disk = 1
		 THEN Move disk from source to dest
ELSE
CALL Hanoi(disk -1, source, spare, dest)
Move disk from source to dest
CALL Hanoi(disk -1, spare, dest, source)
End Procedure Hanoi(disk, source, dest, spare)

Pseudocode 1.4

Note: Refer to Program 4.17 for the code demonstrating the implementation of the solution of the
tower of Hanoi problem.

Types of Errors
While writing programs, very often we get errors in
our programs. These errors if not removed will either
give erroneous output or will not let the compiler
to compile the program. These errors are broadly
classified under four groups as shown in Figure 1.6.

Run-time Errors As the name suggests, run-
time errors occur when the program is being run
executed. Such errors occur when the program performs some illegal operations like

•	 dividing a number by zero
•	 opening a file that already exists

Types of errors

Run-time
errors

Syntax
errors

Linker
errors

Logical
errors

Figure 1.6  Types of errors

Begin Hanoi (disk,source,dest,spare)

Is disk==1?

Move disk from
source to dest

Hanoi (disk-1, source,
 spare, dest)

End Hanoi

Hanoi (disk-1,
spare, dest, source)

Move disk from
source to dest

Problem Solving and Programming with Python_2e_6th Revised.indb 21 15-05-2019 20:02:21

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

22 Problem Solving and Programming with Python

•	 Programming means writing computer programs. While
programming, the programmers takes an algorithm and
code the instructions in a particular programming lan-
guage, so that it can be executed by a computer.

•	 An algorithm provides a blueprint to writing a program
to solve a particular problem.

•	 In the course of processing, data is read from an input
device, stored in computer’s memory for further pro-
cessing and then the result of the processing is written
to an output device.

•	 The data is stored in the computer’s memory in the form
of variables or constants.

•	 For a complex problem, its algorithm is often divided
into smaller units called functions (or modules).

•	 Algorithm validation ensures that the algorithm will
work correctly irrespective of the programming lan-
guage in which it will be implemented.

•	 An algorithm is analysed to measure its performance in
terms of CPU time and memory space required to exe-
cute that algorithm.

•	 Sequence means that each step of the algorithm is exe-
cuted in the specified order.

•	 Decision statements are used when the outcome of the
process depends on some condition.

•	 Iteration or Repetition involves executing one or more
steps for a number of times, can be implemented using
constructs such as the while loops and for loops.

•	 Programming languages have a vocabulary of syntax
and semantics for instructing a computer to perform
specific tasks.

•	 Pseudocode facilitates designers to focus on the logic
of the algorithm without getting bogged down by the
details of language syntax.

Glossary
Program  A set of instructions that tells the computer how
to solve a particular problem.
Algorithm  A step by step instructions that tells the
computer how to solve a particular problem.
Programming  The act of writing programs.
Instruction  A single operation which when executed
convert one state to other.
Modularization  The process of dividing an algorithm
into modules/functions.
Programming language  A language specifically designed
to express computations that can be performed by a computer.

Pseudocode  A compact and informal high-level
description of an algorithm that uses the structural
conventions of a programming language.
Flowchart  A diagrammatic representation that illustrates
the sequence of steps that must be performed to solve a
problem.
Recursion  A technique of solving a problem by
breaking it down into smaller and smaller sub-problems
until you get to a small enough problem that it can be
easily solved.

•	 lack of free memory space
•	 finding square or logarithm of negative numbers

Run-time errors may terminate program execution, so the code must be written in such a way that it handles
all sorts of unexpected errors rather terminating it unexpectedly.

Syntax Errors  Syntax errors (also known as compile-time errors) are generated when rules of a programming
language are violated. Python interprets (executes) each instruction in the program line by line. The moment the
interpreter encounters a syntactic error, it stops further execution of the program.

Semantic or Logical Errors  Semantic errors are those errors which may comply with rules of the programming
language but gives an unexpected and undesirable output which is obviously not correct. For example, if you write a
program to add two numbers but instead of writing ‘+’ symbol, you put the ‘–’ symbol. Then Python will subtract
the numbers and returns the result. But, actually the output is different from what you expected.

Logical errors are errors in the program code. Such errors are not detected by the compiler, and programmers
must check their code line by line or use a debugger to locate and rectify the errors. Logical errors occur due to
incorrect statements.

Linker Errors These errors occur when the linker is not able to find the function definition for a given prototype.

Problem Solving and Programming with Python_2e_6th Revised.indb 22 15-05-2019 20:02:21

Summary

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

23Algorithmic Problem Solving

Exercises
Fill in the blanks
	 1.	 A ________is a set of instructions that tells the

computer how to solve a particular problem.
	 2.	 Algorithms are mainly used to achieve _________.
	 3.	 _____ and _______ statements are used to change

the sequence of execution of instructions.
	 4.	 ______ is a formally defined procedure for

performing some calculation.
	 5.	 ______ statements are used when the outcome of the

process depends on some condition.
	 6.	 Repetition can be implemented using constructs such

as ______, ______, and ______.
	 7.	 A complex algorithm is often divided into smaller

units called ______.

	 8.	 The ______ symbol is always the first and the last
symbol in a flowchart.

	 9.	 ______ is a form of structured English that describes
algorithms.

	10.	 ______ is used to express algorithms and as a mode
of human communication.

	11.	 The process of dividing an algorithm into modules/
functions is called _________.

	12.	 _________is a technique of solving a problem by
breaking it down into smaller and smaller sub-
problems until you get to a small enough problem
that it can be easily solved.

State True or False
	 1.	 An algorithm solves a problem in a finite number of steps.
	 2.	 Flowcharts are drawn in the early stages of

formulating computer solutions.
	 3.	 The main focus of pseudocodes is on the details of

the language syntax.
	 4.	 Algorithms are implemented using a programming

language.
	 5.	 Repetition means that each step of the algorithm is

executed in a specified order.

	 6.	 Terminal symbol depicts the flow of control of the
program.

	 7.	 Labelled connectors are square in shape.
	 8.	 The outputs of each step of an algorithm should be

unambiguous. This means that is should be precise.
	 9.	 You can have maximum one function in a algorithm.
	10.	 Pseudocode is written using the syntax of a particular

programming language.

Multiple Choice Questions

	 1.	 Algorithms should be
(a)	 precise	 (b)	 unambiguous
(c)	 clear	 (d)	 all of these

	 2.	 To check whether a given number is even or odd, you
will use which type of control structure?
(a)	 sequence	 (b)	 decision
(c)	 repetition 	 (d)	 all of these

	 3.	 Which one of the following is a graphical or symbolic
representation of a process?
(a)	 algorithm	 (b)	 flowchart
(c)	 pseudocode	 (d)	 program

	 4.	 In a flowchart, which symbol is represented using a
rectangle?
(a)	 terminal	 (b)	 decision
(c)	 activity	 (d)	 input/output

	 5.	 Which of the following details are omitted in
pseudocodes?
(a)	 variable declaration	
(b)	 system specific code

(c)	 subroutines
(d)	 all of these

	 6.	 A single operation which when executed convert one
state to other is called ________.
(a)	 instruction	 (b)	 program
(c)	 software	 (d)	 control

	 7.	 Algorithm is validated to
(a)	 measure its CPU time
(b)	 measure the memory consumed
(c)	 check if it is correct
(d)	 all of these

	 8.	 Programming languages have a vocabulary of _____
for instructing a computer to perform specific tasks.
(a)	 syntax	 (b)	 semantics
(c)	 both of these	 (d)	 none of these

	 9.	 Syntax and semantics of a language are strictly
checked in ________.
(a)	 algorithm	 (b)	 flowchart
(c)	 pseudocode	 (d)	 program

Problem Solving and Programming with Python_2e_6th Revised.indb 23 15-05-2019 20:02:21

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

24 Problem Solving and Programming with Python

Review Questions
	 1.	 Define an algorithm. How is it useful in the context

of software development?
	 2.	 Explain and compare the approaches for designing

an algorithm.
	 3.	 What is modularization?
	 4.	 Explain sequence, repetition, and decision

statements. Also give the keywords used in each type
of statement.

	 5.	 With the help of an example, explain the use of a
flowchart.

	 6.	 How is a flowchart different from an algorithm?
Do we need to have both of them for program
development?

	 7.	 What do you understand by the term pseudocode?
	 8.	 Differentiate between algorithm and pseudocodes.
	 9.	 Give the characteristics of an algorithm.
	10.	 What do you understand by the term recursion?

	11.	 Write an algorithm and draw a flowchart that
calculates salary of an employee. Prompt the user
to enter the Basic Salary, HRA, TA, and DA. Add
these components to calculate the Gross Salary. Also
deduct 10% salary from the Gross Salary to be paid
as tax.

	12.	 Draw a flowchart and write an algorithm and a
psuedocode for the following problem statements
	(a)	Cook maggi
	(b)	Cross road
	(c)	Calculate bill of items purchased
	(d)	To find out whether a number is positive or

negative
	(e)	Print “Hello” five times on the screen
	(f)	Find area of a rectangle
	(g)	Convert meters into centimeters
	(h)	Find the sum of first 10 numbers

Answers
Fill in the Blanks
1.  Program
2.  software reuse
3.  Decision, repetition

4.  Algorithm
5.  Decision
6. � while, do-while, and for

loops

  7.  functions or modules
  8.  Terminal symbols
  9.  Psuedocode

10.  Flowcharts
11.  Modularization
12.  Recursion

State True or False
  1.  True   2.  True   3.  True   4.  False   5.  False   6.  False   7.  False   8.  False   9.  False   10.  False

Multiple Choice Questions
1.  (d)   2.  (b)   3.  (b)   4.  (c)   5.  (d)   6.  (a)   7.  (c)   8.  (c)   9.  (d)

Problem Solving and Programming with Python_2e_6th Revised.indb 24 15-05-2019 20:02:21

© Oxford University Press. All rights reserved.

Oxfo
rd

 U
niversi

ty
 Pre

ss

