
Data Scientist, [24]7.ai Innovation Labs,
Bangalore

Abhishek S. Nagarajan

Assistant Professor, Department of CSE,
SRM Institute of Science and Technology, Chennai

Karthick Nanmaran

Data
Structures

using Python
Shriram K. Vasudevan

Samayapuram, Trichy,
Tamil Nadu

Principal,
K.. Ramakrishnan College of Technology,

Prelims.indd 1 13-07-2020 13:34:36

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

3
Oxford University Press is a department of the University of Oxford.

It furthers the University’s objective of excellence in research, scholarship,
and education by publishing worldwide. Oxford is a registered trade mark of

Oxford University Press in the UK and in certain other countries.

Published in India by
Oxford University Press

22 Workspace, 2nd Floor, 1/22 Asaf Ali Road, New Delhi 110002

© Oxford University Press 2021

The moral rights of the author/s have been asserted.

First Edition published in 2021

All rights reserved. No part of this publication may be reproduced, stored in
a retrieval system, or transmitted, in any form or by any means, without the

prior permission in writing of Oxford University Press, or as expressly permitted
by law, by licence, or under terms agreed with the appropriate reprographics

rights organization. Enquiries concerning reproduction outside the scope of the
above should be sent to the Rights Department, Oxford University Press, at the

address above.

You must not circulate this work in any other form
and you must impose this same condition on any acquirer.

ISBN-13 (print edition): 978-0-19-012408-3
ISBN-10 (print edition): 0-19-012408-3

eISBN-13 (eBook): 978-0-19-099236-1
eISBN-10 (eBook): 0-19-099236-0

Typeset in Times New Roman and Helvetica LT Std
by Ideal Publishing Solutions, Delhi

Printed in India by

Cover image: © Alok Rawat

For product information and current price, please visit www.india.oup.com

Third-party website addresses mentioned in this book are provided
by Oxford University Press in good faith and for information only.

Oxford University Press disclaims any responsibility for the material contained therein.

Prelims.indd 2 13-07-2020 13:34:36

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

Dedicated to

Baby Hasini, Sai Lakshmi and Master Saihari
Shriram K. Vasudevan

My parents, Usharani and Nagarajan
Abhishek S. Nagarajan

3
Oxford University Press is a department of the University of Oxford.

It furthers the University’s objective of excellence in research, scholarship,
and education by publishing worldwide. Oxford is a registered trade mark of

Oxford University Press in the UK and in certain other countries.

Published in India by
Oxford University Press

22 Workspace, 2nd Floor, 1/22 Asaf Ali Road, New Delhi 110002

© Oxford University Press 2020

The moral rights of the author/s have been asserted.

First Edition published in 2020

All rights reserved. No part of this publication may be reproduced, stored in
a retrieval system, or transmitted, in any form or by any means, without the

prior permission in writing of Oxford University Press, or as expressly permitted
by law, by licence, or under terms agreed with the appropriate reprographics

rights organization. Enquiries concerning reproduction outside the scope of the
above should be sent to the Rights Department, Oxford University Press, at the

address above.

You must not circulate this work in any other form
and you must impose this same condition on any acquirer.

ISBN-13 (print edition): 978-0-19-012408-3
ISBN-10 (print edition): 0-19-012408-3

eISBN-13 (eBook): 978-0-19-099236-1
eISBN-10 (eBook): 0-19-099236-0

Typeset in Times New Roman and Helvetica LT Std
by Ideal Publishing Solutions, Delhi

Printed in India by

Cover image: © Alok Rawat

For product information and current price, please visit www.india.oup.com

Third-party website addresses mentioned in this book are provided
by Oxford University Press in good faith and for information only.

Oxford University Press disclaims any responsibility for the material contained therein.

11121_Data Structure using Python.indb 3 10-07-2020 15:16:23

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

Features of

Search Trees 123

Is the tree shown below a right-left imbalanced tree or a right-right
imbalanced tree?

17

30

40

60

50

55

20

 Food for Brain

7.3.2 Operation—Insert a Node
In a BST, any node inserted is a leaf. In an AVL tree too, nodes are inserted as leaves. There is no
change in the logic in which a node is to be inserted into the tree. After the new node is inserted, the
balance of each node is checked from bottom until the root, as discussed earlier. This process ensures
that the balance is checked only for the ancestors of the inserted node, as the other node’s balance
cannot be modified by the inserted node. In addition, this ensures that the lowest imbalanced node is
found first. If there is an imbalance at a node, it is handled based on the four different cases discussed
above. After the imbalance is fixed, there will be no more imbalances in the nodes in higher levels as
the tree was already balanced before insertion. Thus, after insertion of every node, it is ensured that
the balance of the tree is preserved. Figure 7.16 depicts a sample AVL tree and how insertion of a
node modifies it. The pseudocode for insertion of a node in an AVL tree is shared below. One notable
fact is insertion of a node may not mandatorily make the tree unbalanced. So, it is not mandatory
for rotations to take place for every insertion operation. Pseudocode 7.6 shows Insertion of a node
in a AVL tree.

As a result of the insertion, there comes
an imbalance which is of left-right case

20

15

10

8

25 32

29

18

40

A sample tree in which a new value ‘9’ is inserted

20

15

10

8

25 32

z

y

x

29

18

40

9

The �nal tree is a balanced AVL tree

20

15

10

9

25 32

z

y

x

29

18

40

8

Imbalance is handled by left rotation
at ‘8’ followed by right rotation at ‘10’

20

15

9

8

25 32

29

18

4010

Figure 7.16 Insertion process in an AVL tree

Chapter-07.indd 123 13-07-2020 14:58:11

Learning Outcomes
Each chapter begins with learning outcomes
listing the topics covered in detail.

LEARNING OBJECTIVES
After going through this chapter, readers will be able to understand:

• What are Linear Data Structures?
• What are Arrays?
• How is data stored in continuous memory locations?

Linear Data Structures

CHAPTER

3

3.1 ARRAYS—INTRODUCTION
An array is a collection of memory locations. It
is a pre-defined data structure in all programming
languages. Consider an ice tray in the Figure 3.1. It
has six empty spaces, so it can hold ‘6’ ice cubes. The
spaces can be left unused, but more than ‘6’ ice cubes
cannot be held in it. The same is the case with arrays.
The memory locations cannot be split from each
other, so if there is some empty space, it just goes
waste. In addition, arrays cannot be interchanged.
For example, an ice tray can hold only ice cubes
and an egg tray can have only eggs. An array is a
collection of variables of same type. It cannot hold variables of different types. All the blocks in an array
are of same size, as it holds only the same type of variables. Visual representation of an array is shown in
Figure 3.2. This chapter discusses various operations that can be performed in an array.

3.2 DECLARATION OF ARRAYS
The position of each memory space is indicated by a number. It is called the index or subscript. The
memory address of the first location is stored alone in the variable declaration, while others are calculated
relatively. Say, ‘a’ is the name of the array. Then, ‘a[3]’ = address of ‘a[0] + 3’. While declaration, the
address of ‘a[0]’, that is the starting address of the array, will be associated with the variables named

Figure 3.1 Ice cube tray

Figure 3.2 Visual representation of an array

[0] [1] [2] [3] [4] [5]

Chapter-03.indd 32 25-06-2020 12:14:37Pseudocodes and Python Codes
Numerous pseudocodes and

Python codes have been provided
to help readers improve their

implementation skills.

Sorting 291

Python code 12.3

def Selection_Sort(items):
 n=len(items)
 for i in range(n):
 min_index = i
 for j in range(i,n):
 if (items[j] < items[min_index]):
 min_index = j
 items[i],items[min_index] = items[min_index],items[i]

Figure 12.3 Straight selection sort

5 72 1310

Iteration 4

Note	 •	 The	number	of	iterations	is	equal	to	the	number	of	elements	present	-	1.

	 •	 The	number	of	comparisons	in	every	iteration	is	equal	to	the	number	of	elements	–	1.

	 •	 The	first	‘i’	elements	will	be	in	order	in	‘ith’	iteration,	so	should	not	be	considered	while	finding	the	next	smallest	number.	

	 •	 For	arranging	in	descending	order,	the	comparison	condition	must	be	changed	accordingly.		

Implementation
The Python code for implementation of this sort is shared below (refer to Python code 12.3).

(contd)

Pseudocode 12.2

n=length(list)
for i in 0 to n-1
Do,
 min index = i
 for j in i to n-1
 Do,
 if list[j] < list[min index]
 then,
 min index = j
 swap list[i] list[min index]

Chapter-12.indd 291 25-06-2020 12:20:15

Sorting 291

Python code 12.3

def Selection_Sort(items):
 n=len(items)
 for i in range(n):
 min_index = i
 for j in range(i,n):
 if (items[j] < items[min_index]):
 min_index = j
 items[i],items[min_index] = items[min_index],items[i]

Figure 12.3 Straight selection sort

5 72 1310

Iteration 4

Note	 •	 The	number	of	iterations	is	equal	to	the	number	of	elements	present	-	1.

	 •	 The	number	of	comparisons	in	every	iteration	is	equal	to	the	number	of	elements	–	1.

	 •	 The	first	‘i’	elements	will	be	in	order	in	‘ith’	iteration,	so	should	not	be	considered	while	finding	the	next	smallest	number.	

	 •	 For	arranging	in	descending	order,	the	comparison	condition	must	be	changed	accordingly.		

Implementation
The Python code for implementation of this sort is shared below (refer to Python code 12.3).

(contd)

Pseudocode 12.2

n=length(list)
for i in 0 to n-1
Do,
 min index = i
 for j in i to n-1
 Do,
 if list[j] < list[min index]
 then,
 min index = j
 swap list[i] list[min index]

Chapter-12.indd 291 25-06-2020 12:20:15

Food for Brain
Mid-chapter ‘Food for Brain’ questions given in
each chapter help readers think out of the box.

Prelims.indd 4 13-07-2020 14:59:36

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

the Book

Chapter-end Exercises
The book comes with numerous objective
questions with answers, theoretical review

questions, exploratory application exercises,
pictorial puzzles, and mini projects for self-

check and practice.

186 Data Structures using Python

Pseudocode 8.1

#using array/list based implementation as heaps are based on complete binary trees

heapify(L, node)

 root = node

 left, right = 2 * node + 1, 2 * node + 2

 for i in range of left to right

 if i < size of(L) and L[i] > L[root]

 then,

 root = i

 if root is not node

 then,

 swap L[root] and L[node]

 node = root

 heapify(L, root)

insert(L, value)

 append value into L

 Heapify(L, value)

8.2.2 Operation—Deletion
While insertion is always done at a leaf node, deletion also has a constraint. In a heap, any given element
cannot be deleted as it may distort the heap and crumble it. Deletion happens only at the root. The

deleted root creates a vacant space in the heap.
This space is filled with the last leaf in the heap.
This replacement may violate the heap property
between the new root and one of its children.
Thus, again, the heapify operation is triggered
to put the elements back in place in compliance
with the heap property. In this case, heapify will

stop on reaching a leaf node or a parent-child pair which satisfies the heap property. Pseudocode 8.2
explains the deletion operation.

Question 8.2 Delete ‘50’ from the Figure 8.5.

50

40

7

1

24

5 123

6

45

30

Figure 8.5 Initial max heap

Solution: The process is shown in Figure 8.6.

Pseudocode 8.2

def delete(L):
	 Swap	first	and	last	element
 L.pop(last element)
 heapify(L, 0)

Chapter-08.indd 186 25-06-2020 12:25:49

Priority Queues and Heaps 187

50

40

7

1

24

5 123

6

45

30

12

40

7

1

24

5 3

6

45

30

45

40

7

1

24

5 3

6

12

30

45

40

7

1

24

5 3

6

30

12

Initial max heap. Delete root ‘50’
and replace with last leaf ‘12’ .

Swap ‘30’ and ‘12’ due to
property violation

Final max heap post-deletion

Property violation at the new
root. Swap ‘12’ and ‘45’.

Figure 8.6 Initial max heap. Delete root ‘50’ and replace with last leaf ‘12’. Property violation at the new
 root. Swap ‘12’ and ‘45’. Swap ‘30’ and ‘12’ due to property violation Final max heap post-
deletion

8.2.3 Implementation of Max Heap
The implementation of max heap is shared below with the same operations of insert and delete. Heapify
is implemented as a separate module to be used by either of the operations. Min heap is left for the users
to explore which can be built in the similar way just by changing the comparison conditions. As binary
heaps are completely binary-based, array-based or list-based is the most preferred implementation of
heaps (refer to Python code 8.1). The same has been shared below.

Python code 8.1

def max_heap(L):
 n = len(L)
 parent = (n-1)//2 #Last Parent
 for node in range(parent, -1, -1):
 heapify(L, node)
 print("Constructing Max Heap - Parent > both left and right child")
 return L
def heapify(L, node):
 n = len(L)
 root = node
 left, right = 2 * node + 1, 2 * node + 2
 for i in [left,right]:
 if i < n and L[i] > L[root]:
 root = i
 if root is not node:
 L[root], L[node] = L[node], L[root]
 node = root
 heapify(L, root)

(contd)

Chapter-08.indd 187 25-06-2020 12:26:05

Pointer-Based Linear Data Structures 93

The ‘print_list’ function of SLL should be modified. Instead of printing the value, it should call the
‘print_exnode’ as the value of the node in a SLL is now a new class object. It is suggested that the readers
should try implementing the mathematical functions for this expression class.

Some Real-life Applications of Linked Lists

1. Web indexing, which means indexing pages to alphabets. So when searched, the journey will be
from the first linked list to the linked list with the node that has the page. The traversal across these
pointers will be same as the page name.

2. E-commerce websites where the categories are fixed but the number of elements are not fixed, it
is implemented as a two-dimensional list. In the first list, each node is a category. Every category
node is linked to a new list of products.

3. Implementing a music playlist with repeat mode
4. Instructions in software with undo and redo option. The instructions are stored in DLLs, so undo

is previous shift and redo is next shift (An alternative over deques, but not as efficient as deques).
Thus, linked lists are organized. It is to be noted that the values are no more stored linearly. They are

dispersed in the memory. It falls into linear category as the nodes are linked in a one-to-one basis, in a
linear order. Changing the link strategy will lead to non-linear data structures.

• Linked lists are non–primitive data structures. It is
a linear collection of elements or nodes not stored
in continuous memory locations.

• A linked list has no particular order of motion. It
has no constraint on data insertion and removal.

• The different types of linked lists are as follows:
• Singly linked list
• Doubly linked list
• Circular linked list
• Circular doubly linked list

• A singly linked list has only one pointer or link to
the next node present in the list.

• In a doubly linked list, each node contains two
pointers called ‘NEXT’ and ‘PREV’ pointing to
the next and previous node, respectively.

• In circular linked lists, the last node is connected to
the first node, that is, the last node does not contain
‘Null’ but contains a pointer to the first node of the
list.

• In a circular linked list with one element, the node
should point to itself.

Key Points to RemembeR

Linked lists A linear data structure designed to
store elements in non-continuous memory locations
using pointers from one memory location to the next
location.
Singly linked lists/SLLs A linked list with pointer to
traverse in forward direction. Every node will have a
‘Next’ pointer to move to the consecutive node, whereas
there will not be any way to reach the previous node.
Doubly linked lists/DLL A linked list where every
node has both ‘Next’ and ‘Previous’ pointers.

Circular linked lists A linked list where the last
element points back to the first element to create a
circular structure.
Head pointer The dedicated pointer that marks the
first node/start point of the list.
Pointer-based linear data structures A data
structure that uses pointers to associate a memory
location to another memory location.

Key teRms

Chapter-05.indd 93 25-06-2020 12:30:39

Pointer-Based Linear Data Structures 93

The ‘print_list’ function of SLL should be modified. Instead of printing the value, it should call the
‘print_exnode’ as the value of the node in a SLL is now a new class object. It is suggested that the readers
should try implementing the mathematical functions for this expression class.

Some Real-life Applications of Linked Lists

1. Web indexing, which means indexing pages to alphabets. So when searched, the journey will be
from the first linked list to the linked list with the node that has the page. The traversal across these
pointers will be same as the page name.

2. E-commerce websites where the categories are fixed but the number of elements are not fixed, it
is implemented as a two-dimensional list. In the first list, each node is a category. Every category
node is linked to a new list of products.

3. Implementing a music playlist with repeat mode
4. Instructions in software with undo and redo option. The instructions are stored in DLLs, so undo

is previous shift and redo is next shift (An alternative over deques, but not as efficient as deques).
Thus, linked lists are organized. It is to be noted that the values are no more stored linearly. They are

dispersed in the memory. It falls into linear category as the nodes are linked in a one-to-one basis, in a
linear order. Changing the link strategy will lead to non-linear data structures.

• Linked lists are non–primitive data structures. It is
a linear collection of elements or nodes not stored
in continuous memory locations.

• A linked list has no particular order of motion. It
has no constraint on data insertion and removal.

• The different types of linked lists are as follows:
• Singly linked list
• Doubly linked list
• Circular linked list
• Circular doubly linked list

• A singly linked list has only one pointer or link to
the next node present in the list.

• In a doubly linked list, each node contains two
pointers called ‘NEXT’ and ‘PREV’ pointing to
the next and previous node, respectively.

• In circular linked lists, the last node is connected to
the first node, that is, the last node does not contain
‘Null’ but contains a pointer to the first node of the
list.

• In a circular linked list with one element, the node
should point to itself.

Key Points to RemembeR

Linked lists A linear data structure designed to
store elements in non-continuous memory locations
using pointers from one memory location to the next
location.
Singly linked lists/SLLs A linked list with pointer to
traverse in forward direction. Every node will have a
‘Next’ pointer to move to the consecutive node, whereas
there will not be any way to reach the previous node.
Doubly linked lists/DLL A linked list where every
node has both ‘Next’ and ‘Previous’ pointers.

Circular linked lists A linked list where the last
element points back to the first element to create a
circular structure.
Head pointer The dedicated pointer that marks the
first node/start point of the list.
Pointer-based linear data structures A data
structure that uses pointers to associate a memory
location to another memory location.

Key teRms

Chapter-05.indd 93 25-06-2020 12:30:39

Mid-chapter Solved Questions with
Pictorial Representation
Each chapter includes solved questions with
pictorial representation of data structures’
operation to ensure proper understanding of
feature and visualization of transformation.

Summary and Glossary
Quick recap of the concepts learnt and
glossary of key terms are provided at
the end of each chapter.

Linear Data Structures 39

Multiple-choice Questions
 1. An array is a collection of elements in ________

memory locations.
(a) Distributed (b) Random
(c) Composite (d) Continuous

 2. A ‘list’ is a collection of elements of _________
type.
(a) Same (b) Similar
(c)	 Different	 (d)	 Custom/User	Defined

 3. Lists are _________ based.
(a) Static allocation
(b) Dynamic memory allocation
(c) Fixed memory size
(d) Not disclosed

 4. A __________ is used to access an element in a
list.
(a) Subscript
(b) Index
(c) Relative position
(d) All of the above

 5. Reversal of a ‘List’ can be done using ______.
(a) Additional List
(b) Loops
(c) Recursions
(d) All of the above

 6. ________ is the complexity of merging two lists
of length ‘m’ and ‘n’.
(a) m (b) n
(c) m+n (d) m*n

 7. The last element from a Python list can be
removed using the _______ function.
(a) delete (b) remove
(c) pop (d) del

 8. All elements of lists are listed using _________
operator.
(a) print (b) iterator
(c) traversal (d) peek

 9. A ‘list’ retains the order in which the elements
are inserted, unless changed.
(a) True (b) False

 10. Python lists are implemented using OOP
methodology internally.
(a) True (b) False

Theoretical Review Questions
 1. How are lists organized in memory?
 2. How is memory allocated to lists when elements

of different types are added dynamically?
 3. Elaborate reversal of a list with illustration and

example.
 4. Explain the process of sorting elements in a list.

How will elements of different type be sorted?
 5. Explain some use cases of lists.

Exploratory Application Exercises
 1. Write a code to merge two lists such that all

odd	indices	contain	elements	from	the	first	list	
and all the elements in even indices are from
the second list.

 2. Write a basic code to sort the given list in ascending
order without using any built-in functions.

 3. Develop a function to remove duplicates from
a list.

 4. Using two-dimensional arrays (nested lists) to
implement an element counter. Given a list of
elements,	 the	 final	 structure	 should	 have	 the	
distinct elements and the count of each element
in a table format.

	 5.	 Implement	‘find’	and	‘replace’	as	a	function	that	
finds	a	given	element	from	a	list	and	replaces	all	
the instances with another element. In addition,
try	implementing	‘find’	and	‘replace’	with	regular	
expressions for partial match and searches that are
not case sensitive.

Picto Puzzles

 1. 51 3 4 41 31 54

 2. MODULEA1S9D3L ADLS139

 3. 8998413185 14 13 58

Mini Projects
 1. Implement ADT for matrices along with

arithmetic functions such as addition, subtraction,
and multiplication.

ExErcisEs

Answers to Multiple-choice Questions

1. (d) 2. (c) 3. (b) 4. (d) 5. (d) 6. (c) 7. (c) 8. (b) 9. (a) 10. (a)

Chapter-03.indd 39 10-07-2020 12:02:46

11121_Data Structure using Python.indb 5 10-07-2020 15:16:24

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

“Data is the new oil”
– Clive Humby

In this data-driven technical era, the amount of data that a company holds decides its value and
impact on the society. However, handling the data has its own challenges. Data is absolutely useless
if no meaningful information is extracted from it. This is where the concept of ‘Data Structures’
comes into play. Data structures are formats that aid in efficient access and modification of data.
These were designed for efficient storing and processing volumes of data. The concept of data
structures is completely inspired from real-world structures and solution formats. Data structures
can be implemented in any language, but object oriented programming concepts add value to it.
	 Data structures play an important role in solving everyday problems. The choice of the apt data
structure optimizes the solution of any problem to a great extent. With the power of data structures on
its side, Python can claim to be the fastest growing, major programming language. Python is capable
of handling data and along with data structures concepts it can perform miracles in the data world.
	 “Data Structures is a difficult subject” is a myth that needs to be disproven. It is a skill and a way of
thinking that can be developed with practice. The book Data Structures using Python helps students
in doing just that. It helps them to learn the concepts of various data structures, and enables them to
start implementing their solutions to strengthen their algorithmic and implementation skills with the
help of codes and exploratory questions given at the end of each chapter in this book.

About the book
Data Structures using Python is a textbook cautiously designed for undergraduate and post-
engineering students of computer science, information technology, and allied disciplines. The core
objective of this book is to introduce different types of data structures and make the readers strong
in data structure application for solution implementation. It will also serve as a go-to reference
book for professionals to understand important data structures widely used in the industry.
	 The book starts with highlighting the importance of data structures and slowly moves towards
the idea of basic data structures. The evolution of data structures along with the motivation of each
structure from real-life objects is analogically explained in the book to aid in faster and clearer
understanding for the readers. Data structures are broadly classified as continuous memory-based,
pointer-based, hierarchical, non-linear, and non-hierarchical. The chapters are also organized in
the same evolutionary order to enhance understanding of concepts.
	 Each data structure is first explained, followed with a question and its solution. Then, the
algorithm/pseudocode is shared and finally the Python implementable code is provided. When
there is scope for Python’s capabilities to optimize the algorithm further, a concise version of the
code is added as well. This particular order of explanation/code is designed in such a way that the
readers can clearly comprehend the concepts and implement the same, without which the learning
curve of data structures stays incomplete. All these programs have already been implemented
and tested using Python 3.6 in Anaconda and Python 3 compilers online. The book also has an
Appendix on the useful Python functions and libraries. To further enhance the understanding of

Preface

11121_Data Structure using Python.indb 6 10-07-2020 15:16:24

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

Preface  vii

the subject, application ability and analytical ability of the students, there are numerous objective,
subjective, and programming exercises at the end of each chapter. Above these, each chapter has
a set of innovative pictorial puzzles, where the logic behind the questions to be solved and then
coded using data structures is given. Finally, each chapter has a set of mini projects, which include
some real-world complex problems where data structures have come to the rescue.

Salient Features
The salient features of the book include:
	 ∑	 Simple and lucid explanations for complex Data Structures concepts using analogy of real-

world objects/systems.
	 ∑	 Pictorial representation and problem solving of each data structures operation to ensure

proper understanding of feature and visualization of transformation.
	 ∑	 Base case analysis with pictorial solving for important corner cases of primary algorithms.
	 ∑	 Plenty of implementable programs to help readers improve their implementation skills.
	 ∑	 Mid-chapter exploratory questions in the form of food for brain to help think out of the box

and explore upcoming concepts on their own.
	 ∑	 Implementation promoting coding style where pseudocode is given before Python codes

using which the readers can try out the code before referring to the given snippet.
	 ∑	 Case-studies to show the power of each data structure within each chapter.
	 ∑	 Evolutionary style explanation where every data structure talks about the problem in the

previous structure and how it is overcome with the abilities of the next structure.
	 ∑	 Abundant and variety of chapter-end exercises including objective questions with answers,

theoretical review questions, exploratory application exercises, pictorial puzzles, and mini
projects for self-check and practice.

	 ∑	 Glossary of key terms and point-wise summary at the end of each chapter to help readers
quickly revise important concepts learnt.

Organization of the book
The book is divided into 13 chapters and one appendix.
Chapter 1 provides an introduction to Data Structures, why the concept was introduced, and how
to read Data Structures.
Chapter 2 discusses the concept of Abstract Data Type and how is it useful in implementing data
structures. It introduces the Asymptotic Notations which is the way to measure the cost of an algorithm.
The chapter also deals with recursive functions and methods to measure their performance.
Chapter 3 deals with the most primitive and simplest data structure – Array, and operations on
arrays. It also describes various built-in functions for Python Lists.
Chapter 4 is dedicated to linear data structures which are traditionally continuous memory- based,
and implemented based on Arrays/List – Stack & Queue. It deals with different types of Queue
structures along with the behavioural functionalities of all the structures.
Chapter 5 takes up the first non-continuous structure. The different types of Linked Lists, their
implementation, and working functions are discussed in this chapter. Since Python does not
have the concept of pointers, this chapter shows how nested objects are used to implement non-
contiguous structures.
Chapter 6 unleashes the concept of hierarchical data structures. The concept of associating the
object to multiple objects makes non-linear data structures possible. ‘Tree’ is the basic non-linear,
hierarchical data structure and this chapter introduces the basic tree concepts and behaviour.

11121_Data Structure using Python.indb 7 10-07-2020 15:16:25

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

viii  Preface

Chapter 7 presents one of the most widely used hierarchical data structures. It deals with different
types of Search trees, where there is a constraint with respect to organizing elements in a tree. For
all the search trees, the advantages of every structure over the previous are clearly depicted along
with the operations aiding the apt use of the structure in data intensive applications.
Chapter 8 shows how a non-linear tree structure can be used for a dynamic linear requirement.
This chapter is mainly based on Heaps which a binary tree-like structure using which priority
queues are implemented at optimal cost.
Chapter 9 covers other non-linear data structures such as Trie, Sets, Hash Tables, and Dictionaries.
Trie is a complex form of tree and hash table is used to aid faster storing and searching of data.
Other structures deal with association of various data points, without any particular associativity
amongst themselves.
Chapter 10 is dedicated to the B+ Tree structure which is widely used in data storage. It shows
various functionalities and explains why it is faster while handling data. Other than B+ Tree, it
also throws light on different data structures used in various instances of operating systems.
Chapter 11 handles the non-linear, non-hierarchical data structure, Graphs. First, the various
representations of graph along with their implementations are shared followed with various
algorithms for problems. Algorithms like connectivity, topological sorting, minimum spanning
tree, and shortest distance between any given pair are all explained to aid realistic problem solving.
Chapter 12 explains various sorting techniques. Sorting is the technique of arranging the elements
of a list in a specific order. This chapter deals with a wide range of sorting algorithms which vary in
performance. Sorting techniques such as bubble sort, selection sort, insertion sort, and distribution sort
are discussed. Non-sorting problem solving with techniques like divide and conquer is also explained.
Chapter 13 is dedicated to efficient accessing techniques. Binary search which utilizes the power
of a sorted data is shared in this chapter. This chapter also shows how structures like tree and hash
table can be used to search data efficiently.
The Appendix at the end of the book discusses some of the important utility functions and libraries
in Python. This can help in optimizing the implementation codes.

Acknowledgments
The writing of this textbook was a mammoth task for which a lot of help was required from many
people. We take this moment to thank all our family and friends who supported us in completing
this book.
	 We would like to sincerely thank and acknowledge [24]7.ai family for their support in writing
the book and Abhilaash Nagarajan, Dinesh S, and Apurva Mandalika for extending their help
towards organizing the content and testing programs.
	 Last but not the least, we would like to thank the editorial team at the Oxford University Press,
India for their help and support.
	 Comments and suggestions for the improvement of the book are welcome. Please write to us at
shriramkv@gmail.com.

Shriram K. Vasudevan
Abhishek S. Nagarajan

Karthick Nanmaran

11121_Data Structure using Python.indb 8 10-07-2020 15:16:25

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

1.  Data Structures—Introduction	 1
	 1.1	 Introduction  1
	 1.2	 What is a Data Structure?  1
	 1.3	 Why do We Need Data Structures?  2
	 1.4	� How to Study/Prepare Data Structures?

Why Does it Appear Difficult?  3
	 1.5	 Different Types of Data Structures  3
	 1.6	 How to Select a Data Structure?  3
	 1.7	 How are Data Structures Implemented?  4
	 1.8	 Real-Life Scenarios for Data Structures  4
	 1.6	� Difference Between Data Structures and

Database Management Systems  6

2.  Abstract Data Type and Analysis	 8
	 2.1	 Introduction— Abstract Data Type  8
	 2.2	 Complexity  9
	 2.2.1	 Time Complexity  9
	 2.2.2	 Space Complexity  13
	 2.3	 Asymptotic Notations  14
	 2.3.1	 Big–O  14
	 2.3.2	 Big–Omega  15
	 2.3.3	 Big–Theta  15
	 2.3.4	 Small–O  16
	 2.3.5	 Small-Omega  17
	 2.4	 Recursion  17
	 2.4.1	 How Does Recursion Work?  18
	 2.4.2	 Inefficient Recursion  24
	 2.4.3	 Tail Call Elimination  28
	 2.4.4	 Analysis of Recursive Functions  28
	 2.5	 Applications of Recursion  29

3.  Linear Data Structures	 32
	 3.1	 Arrays—Introduction  32
	 3.2	 Declaration of Arrays  32
	 3.3	 Implementation  33
	 3.3.1	 Insertion  33
	 3.3.2	 Deletion  34

	 3.3.3	 Merging  35
	 3.3.4	 Some More Operations  35
	 3.3.5	 Complexity Analysis  36
	 3.4	 Applications  36
	 3.5	 Python Sequences  37

4. � Continuous Memory-Based Linear
Data Structures	 40

	 4.1	 Introduction  40
	 4.2	 Stack  40
	 4.2.1	 Working—Push Operation  41
	 4.2.2	 Working—Pop Operation  42
	 4.2.3	 Working—Top Operation  43
	 4.3	 Implementation of Stack Using Pointers  43
	 4.4	 Complex Operations  44
	 4.4.1	 Searching  44
	 4.4.2	 Sorting  45
	 4.4.3	 Complexity Analysis  47
	 4.5	 Applications of Stacks  47
	 4.5.1	 Application: Infix-to-Postfix Conversion  47
	 4.5.2	 Application: Evaluation of Prefix

Expression  49
	 4.6	 Queues  50
	 4.7	 Single-Ended Queues  51
	 4.7.1	 Working—Enqueue Operation  51
	 4.7.2	 Working—Dequeue Operation  52
	 4.7.3	 Working—Front Operation  53
	 4.7.4	 Implementation of Single-Ended Queues

using Lists  54
	 4.7.5	 Complex Operations  55
	 4.7.6	 Circular Array-based Implementation of

Single-Ended Queues  58
	 4.8	 Double-Ended Queues  61
	 4.8.1	 Working: Push_Front Operation  61
	 4.8.2	 Working: Push_Back Operation  62
	 4.8.3	 Working: Pop_Front Operation  63
	 4.8.4	 Working: Pop_Back Operation  63

Detailed Contents

Preface  vi

11121_Data Structure using Python.indb 9 10-07-2020 15:16:25

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

x  Detailed Contents

	 4.8.5	 Working: Front Operation  64
	 4.8.6	 Working: Rear Operation  64
	 4.8.7	 Implementation of a Deque  65
	 4.8.8	 Complex Operations  66
	 4.8.9	 Complexity Analysis  66
	 4.9	 Priority Queues  67
	 4.9.1	 Implementation of Priority Queues  67
	 4.10	 Applications of Queues  70
	 4.10.1	 Application: Check if a Given String is a

Palindrome  70

5. � Pointer-Based Linear Data
Structures	 74

	 5.1	 Introduction to Linked Lists  74
	 5.2	 Singly Linked Lists  75
	 5.2.1	 Working—Insert Node Operation  75
	 5.2.2	 Working—Delete Node Operation  77
	 5.2.3	 Working—ValueAt Operation  78
	 5.2.4	 Implementation of Singly Linked Lists  79
	 5.2.5	 Complex Operations—Searching  81
	 5.2.6	 Complex Operations—Sorting  82
	 5.2.7	 Complexity Analysis  82
	 5.3	 Doubly Linked Lists  82
	 5.3.1	 Working—Insert Node Operation  82
	 5.3.2	 Working—Delete Node Operation  84
	 5.3.3	 Working—ValueAt Operation  86
	 5.3.4	 Implementation of Doubly Linked Lists  86
	 5.3.5	 Complexity Analysis  88
	 5.4	 Circular Linked Lists  88
	 5.4.1	 Working—Insert Node Operation  88
	 5.4.3	 Implementation of Circular Linked Lists  90
	 5.4.4	 Complexity Analysis  91
	 5.5	 Applications of Linked Lists  91

6. � Pointer-Based Hierarchical
Data Structures	 96

	 6.1	 Introduction—Non-Linear Data Structures  96
	 6.2	 Trees  96
	 6.2.1	 Definitions  97
	 6.3	 Binary Trees  98
	 6.3.1	 Types of Binary Trees  98
	 6.4	 Implementation of Binary Trees  100
	 6.4.1	 Pointer-based Implementation  100
	 6.4.2	 Array-based Implementation  101
	 6.4.3	 Linked List-based Implementation  102

	 6.5	 Traversal  102
	 6.5.1	 In-order Traversal  102
	 6.5.2	 Pre-order Traversal  103
	 6.5.3	 Post-order Traversal  103
	 6.5.4	 Level-ordered Traversal  104
	 6.6	 Basic Operations  105
	 6.6.1	 Inserting a Node  105
	 6.6.2	 Deleting a Node  105
	 6.7	 Threaded Binary Trees  106
	 6.8	 Applications of Trees  107

7.  Search Trees  111
	 7.1	 Introduction  111
	 7.2	 Binary Search Trees  111
	 7.2.1	 Operation—Search Value  112
	 7.2.2	 Operation—Insert a Node  113
	 7.2.3	 Operation—Delete a Node  113
	 7.2.4	 Implementation of Binary Search Trees  115
	 7.2.5	 Complexity Analysis  118
	 7.3	 AVL Trees  118
	 7.3.1	 Operation—Search Value  119
	 7.3.2	 Operation—Insert a Node  123
	 7.3.3	 Operation—Deleting a Node  124
	 7.3.4	 Implementation of AVL Trees  125
	 7.3.5	 Complexity Analysis  129
	 7.4	 Red—Black Trees  129
	 7.4.1	 Operation—Insertion  130
	 7.4.2	 Operation—Delete a Node  134
	 7.4.3	 Implementation of Red-Black Trees  140
	 7.4.4	 Complexity Analysis  149
	 7.5	 Splay Trees  149
	 7.5.1	 Operation—‘Search a Value’ or ‘Splay a

Value’  150
	 7.5.2	 Operation—Insert a Node  156
	 7.5.3	 Operation—Delete a Node  158
	 7.5.4	 Implementation of Splay Trees  159
	 7.5.5	 Complexity Analysis  165
	 7.6	 B-Trees  166
	 7.6.1	 In-order Traversal  166
	 7.6.2	 Operation—Search a Node  167
	 7.6.3	 Operation—Insert a Node  167
	 7.6.4	 Operation—Delete a Node  170
	 7.6.5	 Implementation of B-Trees  172
	 7.6.6	 Complexity Analysis  178
	 7.7	 Applications of Search Trees  179

11121_Data Structure using Python.indb 10 10-07-2020 15:16:25

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

Detailed Contents  xi

8.  Priority Queues and Heaps  184
	 8.1	 Introduction—Heap  184
	 8.2	 Binary Heaps  184
	 8.2.1	 Operation—Insertion  185
	 8.2.2	 Operation—Deletion  186
	 8.2.3	 Implementation of Max Heap  187
	 8.2.4	 Complexity Analysis  188
	 8.3	 Leftist Heaps  188
	 8.3.1	 Operation—Merging  189
	 8.3.2	 Operation—Insertion  192
	 8.3.3	 Operation—Deletion  193
	 8.3.4	 Implementation of Leftist Heaps  194
	 8.3.5	 Complexity Analysis  196
	 8.4	 Priority Queues Using Heaps  196
	 8.5	 Applications of Heaps  197

9.  Other Non-Linear Data Structures  202
	 9.1	 Introduction—Non-Linear, Non-Hierarchical

Data Structures  202
	 9.2	 Trie  202
	 9.2.1	 Insertion of a Key  203
	 9.2.2	 Searching a Key  205
	 9.2.3	 Implementation  207
	 9.2.4	 Complexity Analysis  210
	 9.2.5	 Applications of Trie  210
	 9.3	 Dictionary  211
	 9.3.1	 Inserting a Key and its Value  211
	 9.3.2	 Deleting a Key along with Value  212
	 9.3.3	 Merging Dictionaries  213
	 9.3.4	 Handling Tabular Data  213
	 9.3.5	 Implementation  214
	 9.3.6	 Complexity  215
	 9.3.7	 Applications of Dictionary  215
	 9.4	 Hash Tables  216
	 9.4.1	 Linear Probing  217
	 9.4.2	 Chaining the Elements  218
	 9.4.3	 Implementation  220
	 9.4.4	 Complexity  221
	 9.4.5	 Applications of Hash Tables  221
	 9.5	 Sets  222
	 9.5.1	 Operation—Insertion of an Element  222
	 9.5.2	 Operation—Removal of Elements  222
	 9.5.3	 Binary Set Operations  223
	 9.5.4	 Other Utility Functions  223
	 9.5.5	 Implementation  224

	 9.5.6	 Complexity Analysis  224
	 9.5.7	 Applications of Set  224
	 9.5.8	 Variants of Set Data Structure  224
	 9.5	 Counter/Multisets  226
	 9.5.1	 Accessing  227
	 9.5.2	 Binary Operations on Counters  227

10.  Memory Management  232
	 10.1	 Introduction—Memory Management  232
	 10.2	 Data Structures In Memory Management  233
	 10.3	 B+ Trees  234
	 10.3.1	 Working  235
	 10.3	 Memory Hierarchy and Caching  239

11.  Graphs  247
	 11.1	 Introduction  247
	 11.2	 Components of a Graph  247
	 11.3	 Graph Representation  248
	 11.3.1	 Linked List-based Representation  248
	 11.3.2	 Matrix-based Representation  249
	 11.3.3	 Pointer-based Representation  249
	 11.3.4	 Performance Comparison of Graph

Representation  250
	 11.4	 Types of Graphs  251
	 11.5	 Working  252
	 11.5.1	 Insertion of a Node  252
	 11.5.2	 Insertion of an Edge  253
	 11.5.3	 Deletion of an Edge  253
	 11.5.4	 Deletion of a Node  253
	 11.6	 Traversal  253
	 11.6.1	 Depth First Search  253
	 11.5.2	 Breadth First Search  255
	 11.7	 Implementation of Graphs  257
	 11.7.1	 Adjacency List-based Representation  257
	 11.7.2	 Adjacency Matrix-based

Representation  260
	 11.7.3	 Incidence Matrix-based

Representation  262
	 11.8	 Complexity Analysis of Graphs  264
	 11.9	 Topological Sorting  264
	 11.9.1	 Implementation  266
	 11.9.2	 Complexity Analysis  267
	11.10	 Spanning Trees  267
	 11.10.1	 Kruskal’s Algorithm  268
	 11.10.2	 Prim’s Algorithm  272

11121_Data Structure using Python.indb 11 10-07-2020 15:16:25

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

xii  Detailed Contents

	11.11	 Shortest Distance  275
	 11.11.1	 Dijkstra’s Algorithm  276
	 11.11.2	 Floyd-Warshall Algorithm  278
	11.12	 Graph Connectivity  280
	11.13	 Applications of Graphs  283

12.  Sorting  287
	 12.1	 Introduction to Sorting  287
	 12.2	 Importance of Sorting Algorithms  287
	 12.3	 Exchange Sort  288
	 12.3.1	 Bubble Sort  288
	 12.4	 Selection Sort  290
	 12.4.1	 Straight Selection Sort  290
	 12.4.2	 Heap Sort  293
	 12.5	 Insertion Sort  296
	 12.5.1	 Simple Insertion Sort  297
	 12.5.2	 Shell Sort  299
	 12.6	 Divide and Conquer  301
	 12.6.1	 Merge Sort  301
	 12.6.2	 Quick Sort  305

	 12.7	 Distributed Sort  311
	 12.7.1	 Bucket Sort  311
	 12.7.2	 Counting Sort  314
	 12.7.3	 Radix Sort  317
	 12.8	 Comparison of Sorts  319

13.  Searching  323
	 13.1	 Introduction—What is Searching?  323
	 13.2	 Linear Search  323
	 13.2.1	 Working  324
	 13.2.2	 Implementation  325
	 13.3.3	 Complexity Analysis  325
	 13.3	 Binary Search  325
	 13.3.1	 Working  326
	 13.3.2	 Implementation  327
	 13.3.3	 Complexity Analysis  328
	 13.4	 Tree-Based Search  328
	 13.5	 Hashing  328
	 13.6	 Case Studies of Searching Techniques  328

Appendix  332
Index  343
Glossary  345
About the Authors  347
Related Titles  348

11121_Data Structure using Python.indb 12 10-07-2020 15:16:25

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

LEARNING OBJECTIVES
After going through this chapter, readers will be able to understand:

•	 What is a data structure?
•	 Why are data structures needed?
•	 How to study and understand data structures?
•	 How are data structures implemented?
•	 Why do data structures appear difficult?
•	 Real-life scenarios for data structures
•	 DBMS vs Data Structures

Data Structures—Introduction

CHAPTER

1

1.1  INTRODUCTION
Before taking a deep dive into the programming and algorithmic aspects of data structures, it is inevitable
for someone to understand certain fundamental things. What is a data structure? Why do we need a
concept called data structure? How to prepare for this subject? Why does it appear to be one of the
toughest courses of all times in computer science? How to select your appropriate data structure? All
these points shall be clarified in this chapter. It shall serve as a platform for understanding the rest of
the chapters.

1.2  WHAT IS A DATA STRUCTURE?
A data structure is a format for storing data in an organized manner. The readers could even be surprised
to know that they have already been familiar with data structures. If terms such as array, record, or file
are familiar to the reader, then data structure is also familiar.

The next question in the minds of the readers would be, why should the data be organized or why do
we need data structure? Assume that you have a rack with a lot of books catering to different subjects
such as Computer Science, Biology, and Physics. The books are not organized and randomly piled up.
One can refer to Figure 1.1 to understand what is being portrayed.

It is very easy to interpret that picking out one book on a particular topic from the unorganized rack
is a tough task and a nightmare if the table is huge with more number of books in place.

11121_Data Structure using Python.indb 1 10-07-2020 15:16:25

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

2  Data Structures using Python

Coming to the next scenario, assume a rack which is neatly organized with books properly sectioned
as shown in Figure 1.2. The question now is, how much difficult it would be to spot a book from this
organized rack? It would not take much time and shall be very easy. This is the difference a reader should
understand.

Figure 1.1  An unorganized rack of books

Figure 1.2  An organized rack

Coming back to computer science, data structure is all about organizing, managing, and storing data.
This shall enable efficient access with increased ease of access. Let us get the understanding better with
more discussion.

1.3  WHY DO WE NEED DATA STRUCTURES?
Most of the interviews, examinations, and discussions will certainly have this question. The understanding
of the need for data structures shall inculcate the interest in the reader to learn the subject and concepts
deeper. Data structure is a method/technique for storing and organizing the information in a computing

11121_Data Structure using Python.indb 2 10-07-2020 15:16:26

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

Data Structures—Introduction  3

machine. Since it is all organized and well maintained, storage is properly taken care of and the data
being searched for can be retrieved very easily and fast, hence effectively increasing the productivity.
There is no single type of data structure that the reader is going to be introduced with. There are many
types of classifications and each of these is unique. Data structures are generally classified as primitive
and non-primitive and one can choose the appropriate option based on the requirements and suitability.

Experienced programmers shall agree to this point that the efficiency and speed at which a program
runs depends on the choice of data structures and its implementation. Hence, data structures are important
to organize data and to make sure the retrieval happens fast during data search.

1.4 � HOW TO STUDY/PREPARE DATA STRUCTURES? WHY DOES
IT APPEAR DIFFICULT?

First and foremost point to be understood is that ‘data structure is not tough’. It is like any other subject
which needs attention and a bit of patience to understand the flow. Every concept in a data structure has
to be related to a real-time/real-life example. This approach would solve half the problem. Every data
structure is inspired by some real-life scenario and this is well articulated in this book. For instance, if
you take the data structure ‘queue’, it is inspired by the queue we stand in everyday for one purpose
or other. In case of ‘stack’, bread slices can be cited as an example. Likewise, there are many real-life
examples present in our day-to-day situations and all that is required is to correlate the examples to these
data structures.

To make it simple, first identify the example related to a particular data structure, understand it and
then navigate to technical learning. Realizing the data structure through implementation is very important.
For implementation and to build the code, C, C++, or Python are preferred. Hence, the fundamental
knowhow of any of these languages is a must. Here, in this book, we have used Python and it is one of
the best options.

Data Structures = Concepts + Programming Skills

1.5  DIFFERENT TYPES OF DATA STRUCTURES
There are three major types of data structures:

1.	 Linear data structures
2.	 Non-linear, hierarchical data structures
3.	 Non-linear, non-hierarchical data structures
As the name suggests, in linear data structures, every data point can associate itself to a maximum

of two data points only, one before and one after it. Here, the data points can be in continuous memory
location. However, it is not mandatory to have the data points in continuous memory location. In non-
linear data structures, the data points can never be stored in continuous memory locations as every data
point can be associated with more than two data points. In hierarchical data structures, the data points
maintain a hierarchical relationship among themselves. The last form of non-hierarchical is the most
random form of data structures. Here, any data point can be associated with anything and the complete
relationship is to be captured in a single structure.

1.6  HOW TO SELECT A DATA STRUCTURE?
Selection of a data structure for a scenario is completely based on the scenario and answering the following
questions in order will help:

1.	 What is the associativity/relation among the data points?
2.	 Does the order of element have any significance in the solution?

11121_Data Structure using Python.indb 3 10-07-2020 15:16:26

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

4  Data Structures using Python

3.	 Does the solution involve any order while processing, that is, can any element be modified directly
or will there be any constraints on it?

4.	 What is the most frequently done operation in the solution?
5.	 Is there any specific behaviour expected from the structure in the solution?
Every time when a data structure is to be selected, do not feel that a particular feature of the data

structure is an obstacle in the solution. Instead, pick the closest data structure and modify it as required.
Always remember that a data structure is used to find a solution and the problem/solution will usually
not be tailor-made for it. You will need to find a closest match.

1.7  HOW ARE DATA STRUCTURES IMPLEMENTED?
Data structures are implemented based on the object oriented programming (OOP) methodology. The
features and associativity are defined in the form of classes and applied for the solution. It uses the OOP
concept of abstraction and functional programming more. By defining the behaviour as functions inside
classes, code reusability is achieved. For a user, it is sufficient if the behaviour of the data structure is
known. It is not mandatory for the user to understand how the particular feature is defined. Thus, the
functions inside the class abstract the unwanted information from the user. These are achieved by defining
data structures as ADTs, called Abstract Data Types, explained in detail in Chapter 2.

1.8  REAL-LIFE SCENARIOS FOR DATA STRUCTURES
Figures 1.3-1.6 show the data structures that you see in the real-life elements every day. This is the
approach used in the book throughout. Figure 1.3 is a train which is exactly the concept behind the linked
lists. Figure 1.4 has a set of books piled, which is the idea behind the stack data structure. Needless to
say, Figure 1.5 shows a tree which was behind the tree concepts in data structure. Followed by these is
the Queue in data structure which is inspired through a real-life queue (Figure 1.6).

Figure 1.6  Real-life queue—‘Queue Data Structure’

Figure 1.3  Train as ‘Linked Lists’

Figure 1.5  Tree as ‘Tree Data Structure’

Figure 1.4  Piled-up books as ‘Stack’

11121_Data Structure using Python.indb 4 10-07-2020 15:16:27

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

Data Structures—Introduction  5

Considering the above points, it can be understood that learning data structure with appropriate examples
and concepts in place would be easier. The complete book is framed with a lot of examples and real-life
references for detailed, fast learning. Examples of objects such as marbles, playing cards, buckets, etc.
have been used in this book for easy understanding of concepts.

Find some more examples of real-time data structures.

 Food for Brain

Question 1.1  How to represent the relationship of a grand-father to father to son while processing?

Solution:  The relationship is shown in Figure 1.7.

Family tree

Grandfather

Father

Son 1 Son 2

Figure 1.7  Relationship tree

11
25

 km

18
59

 k
m

1278 km

37
66

 k
m

1640 km995 km

650 km

Jaipur

Mumbai

Bengaluru

kanyakumari

Ladakh

Graph of cities

Figure 1.8  Road trip linked list charts

Question 1.2  How to represent few cities and distance between them in order to plan a road trip easily
using the information?

Solution:  The information for the road trip is shown in Figure 1.8.

11121_Data Structure using Python.indb 5 10-07-2020 15:16:28

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

6  Data Structures using Python

•	 A data structure is a format for storing the data in
an organized manner.

•	 Data structure is all about learning how to store and
retrieve data in an effective and efficient manner.

•	 The simplest data structure is an array.
•	 Data structures can be classified as primitive and

non-primitive data structures.

•	 Only when the real-life examples are connected
with learning, it becomes easier.

•	 Data structure is a combination of concepts and
programming approach to implement the concepts.

•	 Things and components existing in real life can be
related easily to data structures. Simple examples
start with train, trees, books on the table, etc.

Key Points to Remember

Multiple-choice Questions
	 1.	 Data structures are broadly classified into

__________categories.
(a)	 2 	 (b)	 5
(c)	 3	 (d)	 None of the above

	 2.	 What is the most important point while selecting
the data structure for a problem?
(a)	 Associativity among the data points
(b)	 Most common operation optimally

required in the solution
(c)	 Any behaviour required while storing and

retrieving the information
(d)	 All of the above

	 3.	 Linear data structures can be significantly
differentiated into how many types?
(a)	 2	 (b)	 3
(c)	 4	 (d)	 5

	 4.	 A data point can always be associated to a
maximum of two data points only?
(a)	 True	 (b)	 False

	 5.	 Data structures’ behaviour is implemented in
classes to achieve_______.
(a)	 Abstraction
(b)	 Functional programming
(c)	 Polymorphism
(d)	 Object oriented programming methodology

Theoretical Review Questions
	 1.	 Define data structures.
	 2.	 Explain why data has to be structured. What are

the implications one would face in case the data
is not structured.

	 3.	 Express your views about the connection
between data structures and speedy execution.

Exercises

1.6 � DIFFERENCE BETWEEN DATA STRUCTURES AND DATABASE
MANAGEMENT SYSTEMS

All real-time data can be organized as objects, with each object having a lot of features. Multiple objects
can have similar features if they ideally belong to the same class. At one time, two different objects may
have a relationship. Database is a collection of similar objects. A table is a collection of similar objects,
where each row is an object. The relationship among objects is represented as relation between tables. All
the fields in the table are the features of that particular object. Database deals with permanent memory and
stores data and relationship in real time, whereas data structure functions only at run time. Data Structures
are more suitable for organizing data for efficient processing. In memory, all data is nothing but a collection
of memory locations and values in them. In RAM, how these memory units are associated for efficient
processing is all about data structures. They are not a permanent storage. In database, processing constraints
cannot be applied as it only handles organizing and storing data by establishing relationships. All processing
constraints are from data structures, with the key intent of improving performance of a solution.

11121_Data Structure using Python.indb 6 10-07-2020 15:16:28

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

Data Structures—Introduction  7

	 4.	 Mention the types of data structures you are
aware of.

	 5.	 Mention some of the real-life elements which
can be connected to data structures.

Exploratory Application Exercises
	 1.	 Write a function to sort the given numbers.
	 2.	 From a file with one million numbers, find all

the given numbers.
	 3.	 Develop a function for enquiry of subject’s

registration so that while enquiring for a process
the prerequisites can be directly checked and
registered if not done.

	 4.	 Write a program to check if a given string is a
palindrome or not.

	 5.	 Represent places and distances in a structure and
identify the shortest distance between any two
places.

Picto Puzzles
Identify the logic for all the picto puzzles given below.
	 1.	 DATA STRUCTIRE ERUTCURTS ATAD
	 2.	 ‘3 + (5 * 4)’ 23

	 3.	 ‘3x + 4y’ + ‘4x – 7y’ 7x – 3y
	 4.	 1 2 3 4 5 5 4 3 2 1
	 5.	 7 2 9 4 3 2

Mini Projects
	 1.	 Develop a system to represent places and the

distance among them. The system must also be
able to identify if every place is connected to
every other place either directly or indirectly.

	 2.	 Design a module to handle the tasks in an
operating system. It should have the ability to
take in new jobs as they are created along with
a priority. Based on the priority, the next job is
executed. Every job will have the total time for
execution as well. When a job is waiting for
more than a threshold, its priority will increase
further. This module will act as a scheduler
and return the order in which the jobs will be
executed.

	 3.	 Design a structure to represent a family tree.
The structure should maintain the hierarchy
properly. It should also have a function to print
the members in hierarchy.

Answers to Multiple-choice Questions

1.  (c)	 2.  (d)	 3.  (a)	 4.  (b)	 5.  (d)

11121_Data Structure using Python.indb 7 10-07-2020 15:16:28

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

