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1.1 INTRODUCTION
The science of mechanics of  uids based on the fundamental laws of motion 
 (similar to those applied to mechanics of solids) is known as . 
Thus,  uid mechanics is the study of  uids in motion or at rest and the subse-
quent effects of the  uids on the boundaries, which may be either solid surfaces or 
other  uids. In essence,  uid mechanics combines the rational equations of ideal 
 uid  ow with empirical equations of real  uid  ow and correlates the physical 

 analysis with results from experiments. A great deal of theoretical treatment is 
available only in case of certain idealized situations, which may not be valid in 
real-life problems. Thus, recourse to experiments and numerical approaches is 
often found useful to deal with complex  uid  ows. Traditionally, the engineering 
science of  uid mechanics has been developed through an understanding of  uid 
properties, the application of basic laws of mechanics and thermodynamics, and 
an orderly experimentation. 

In this chapter, several  uid properties, such as density, viscosity, surface 
tension, and vapor pressure are described. Density and viscosity play major 
roles in open and closed channel  ows and in the  ow around immersed objects. 
The consideration of surface tension is important in the formation of droplets, 
in the  ow of small jets, and in the formation of capillary waves. Vapor pres-
sure accounts for changes from liquid to gas and is particularly important when 
reduced pressures are encountered.

Fundamentals of Fluid 
Mechanics

1

In this chapter, we discuss the properties that are encountered in the analy-
sis of fl uid fl ow. First we discuss the concept of a fl uid and then classify the 
fl uid through a rheological diagram. This is followed by a description of the 
properties such as density, specifi c volume, specifi c gravity, relative density, 
and thermodynamic properties. Then we treat the fl uid as continuum and 
describe its viscosity property, which plays a dominant role in most aspects 
of fl uid fl ow. Finally, other properties, such as vapor pressure, compressibility, 
capillarity, and surface tension are also considered.
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1.2 CONCEPT OF A FLUID
A  uid is a substance that deforms continuously when subjected to a shear stress, 
no matter how small that shear stress may be. This property is important since 
it distinguishes a liquid from a solid, no matter how viscous the liquid may be. 
A shear force is the force component tangent to a surface, and this force divided 
by the area of the surface is the average shear stress over the area. Shear stress at 
a point is the limiting value of the shear force to area, as the area is reduced to the 
point or tends to zero.

A solid can resist a shear stress by a static deformation, whereas a  uid cannot. 
Under the action of shear stress on a solid, the amount of unit deformation will 
be proportional to the unit stress, and if the elastic limit is not exceeded, the solid 
returns to its original shape on removal of the stress. The molecules of a solid are 
more closely packed as compared to that of a  uid. Attractive forces between the 
molecules of a solid are much larger than those of a  uid. A solid body undergoes 
either a de  nite deformation or breaks completely when the shear stress is applied 
on it. The amount of deformation is proportional to the magnitude of the applied 
stress up to some limiting condition.

Any shear stress applied to a  uid, no matter how small, will result in motion 
of the  uid. The  uid moves and deforms continuously as long as the shear stress 
is applied. As a corollary, we can say that a  uid at rest must be in a state of 
zero shear stress, a state often called the hydrostatic stress condition in structural 
 analysis. In this condition, Mohr’s circle for stress reduces to a point and there is 
no shear stress on any plane cut through the element under the stress.

If a shear stress τ is applied at any location in a  uid, the element 0111 

(Fig. 1.1) that is initially at rest will move to 0221 and to 0331, etc. In other words, 
the tangential stress in a  uid body depends on the velocity of deformation and 
vanishes as this velocity approaches zero.

All liquids and gases are  uids, as they undergo deformation continuously 
when subjected to even the slightest shear force. We shall hereafter refer to liquids 
and gases only as  uids. A liquid has a de  nite volume and it takes the shape of 

2 Fluid Mechanics and Machinery

p
p

Liquid p

A

312111

0

2 31

τ

τ

Fig. 1.1 Shear stress on a fl uid body
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Fundamentals of Fluid Mechanics 3

the vessel containing it. It would occupy the vessel fully or partially depending on 
its content and it will have free surface. However, a gas has no de  nite shape, and 
it would expand and occupy the vessel fully and it cannot have a free surface. The 
volume of a liquid varies very slightly due to the change in temperature and pres-
sure. This variation is so small that for all practical purposes it is often negligible, 
and hence, a liquid can be considered as incompressible. But a gas undergoes 
considerable change in volume due to changes in temperature and pressure, and 
hence, gas is a compressible  uid.

 is a science of deformation and  ow. Fluids may be classi  ed as 
Newtonian and non-Newtonian. Figure 1.2 shows such a classi  cation of  uids. In 
the case of solid, shear stress τ is proportional to the magnitude of the deformation, 
but in many  uids the shear stress is proportional to the time rate of angular defor-
mation. For Newtonian  uids, the slope of the line is equal to the viscosity. Glycerin, 
air, water, kerosene, thin lubricating oil (under normal working conditions), etc., are 
some of the examples of Newtonian  uids. The ideal  uid, with no viscosity, is rep-
resented by the horizontal axis, whereas the 
true elastic solid is represented by the vertical 
axis. A plastic that sustains a certain amount 
of stress before suffering a plastic  ow can be 
shown by a straight line intersecting the ver-
tical axis at the yield stress. There are certain 
non-Newtonian  uids in which  varies with 
the rate of deformation. Some examples of 
non-Newtonian  uids are human blood and 
thick lubricating oil. The viscous behavior of 
non-Newtonian  uid may be prescribed by 
the power law equation

τ =
⎛
⎝⎜

⎞
⎠⎟

k
du

dy

n

(1.1)

Here,  =  ow behavior index and  = consistency index.
For Newtonian  uids, the consistency index  becomes dynamic viscosity  

and the  ow behavior index  assumes a unity value.
Fluids such as milk, blood, clay, and liquid cement for which the  ow behav-

ior index  < 1, are called pseudoplastic. Fluids for which  > 1 are called  dilatants. 
Concentrated solution of sugar and aqueous suspension of rice starch are examples 
of dilatants.

Example 1.1 Classify the substances that have the rates of deformation corres-
ponding to shear stresses shown in Table 1.1.

Fig. 1.2 Rheological diagram

y

Ideal fluid

x

Elastic solid
Ideal plastic

Non-Newtonian fluid

Newtonian fluid

Table 1.1

du/dy (rad/s) 0 1 3 5

τ (kPa or kN/m2) 15 20 30 40
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Solution Figure 1.3 indicates the classi  cation as non-Newtonian. Please note 
that at zero deformation, shear stress is not zero.

1.3 ENGINEERING SYSTEM OF UNITS
In this book, the International System of 
Units is utilized throughout. Four funda-
mental quantities of measurement (from 
which others can be derived) are length, 
mass, force, and time. In the International 
System, they are meter (m), kilogram (kg), 
newton (N), and second (s) (Table 1.2).

The two unit pre  xes in the Inter-
national System that are commonly 
encountered in  uid mechanics problems 
are kilo (k) and milli (m), which indicate 
factors of 1000 and 0.001, respectively. 
The pre  xes used for SI units are detailed 
in Table 1.3.

1.4 PROPERTIES OF FLUID
Any characteristic of a system is called its 
property. Some familiar properties are pressure , temperature , volume , and 
mass . The list can be extended to include less familiar ones such as viscosity, ther-
mal conductivity, modulus of elasticity, thermal expansion of coef  cient, electric 
resistivity, and even velocity and elevation.

Two important parameters that tend to indicate the heaviness of substances 
are mass density and speci  c weight (unit weight). Mass density is typically used 

Table 1.2 SI units of measurements

Quantities International 
system

Length Meter (m)

Mass Kilogram (kg)

Force
Newton (N) 
(=kg-m/s2)

Time Second (s)

Weight Newton (N)

Area m2

Volume m3

Velocity m/s

Acceleration m/s2

45

40

35

30

25

20

15

10

5

0 1 2 3

 (k
Pa

)

Non-Newtonian/ideal plastic

4 5 6
du/dy(rad/s)

τ

Fig. 1.3 Shear stress versus rate of deformation graph

4 Fluid Mechanics and Machinery
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Fundamentals of Fluid Mechanics 5

to characterize the mass of the  uid system, and speci  c weight is typically used 
to characterize the weight of the system.

The density of a substance, in general, depends on temperature and pressure. 
The density of most gases is proportional to pressure and inversely proportional 
to temperature.

Liquids and solids, on the other hand, are essentially incompressible sub-
stances and the variation of their density with pressure is usually negligible. 
For example, at 20°C the density of water changes from 998 kg/m3 at 1 atm to 
1003 kg/m3 at 100 atm, a change of just 0.5%.

The density of liquids and solids depends more strongly on temperature than it 
does on pressure. For example, the density of water changes from 998 kg/m3 at 20°C 
to 975 kg/m3 at 75°C, a change of 2.3%. In view of this, the values of mass density 
reported in Table 1.4 are expected to be invariant with the alterations in pressure.
Mass density It is also known as speci  c mass of a liquid and may be de  ned 
as the mass per unit volume. It is usually denoted by r (rho).

r �
m

V
kg/m3 (1.2)

Figure 1.4 shows a graphical representation of mass density variation with temper-
ature. It can be seen that with an increase in temperature, mass density decreases.

Table 1.3 Prefi xes for SI units

Factors by 
which unit is 
multiplied

Prefi x Symbol

1012 Tera T

109 Giga G

106 Mega M

103 Kilo k

102 Hecto h

10 Deka da

10−1 Deci d

10−2 Centi c

10−3 Milli m

10−6 Micro μ

10−9 Nano n

10−12 Pico p

10−15 Femto f

10−18 Atto a

Table 1.4 Variation of mass density 
with respect to temperature

Temperature (°C) Mass density 
(kg/m3)

0 1000

10 1000

20 998

30 996

40 992

50 988

60 984

70 978

80 971

90 965

100 958
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6 Fluid Mechanics and Machinery

To compare the different  uids, Table 1.5 lists mass density at 20°C. It can be 
seen that mercury has a mass density that is 13.6 times that of water.

As the water temperature range of the data is considerable, one requires rela-
tionships for r as functions of temperature . Streeter and Wylie (1979) have given 
the variation of r for water with  ranging from 0°C to 100°C in a tabular form. 
Using these data, the following best-  t equation is obtained in SI units.

 

r � � �
�

958 4 41 5
71

100

415

415

5 6 0 18

. .

.

−
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

−

T T  
(1.2a)

Graphical representation1010

1000

990

980

970

960

950
0 20 40 60

Temperature in °C
80 100 120

in
 k

g/
m

3
ρ

Fig. 1.4 Variation of mass density with respect to temperature

Table 1.5 Approximate physical prop-
erty (mass density) of some common 
liquids at 1 atmospheric pressure and 
at 20°C

Fluids r (kg/m3)

Water 998

Sea water 1028

Mercury 13,570

Kerosene 819

Carbon tetrachloride 1588

Glycerin 1258

Gasoline 719

Benzene 879

Ammonia 829

Air 1.205

The maximum percentage error in the 
use of Eqn (1.2a) is 1.0, which occurs 
in a very narrow band of temperature.

Weight density It (also known as spe-
ci  c weight or unit weight) is de  ned 
as the weight per unit volume. It is usu-
ally denoted by g (gamma).

                   
g = W

V
N/m3

               
(1.3)

Figure 1.5 shows a graphical represen-
tation of speci  c weight with respect to 
temperature.

In engineering, we  nd use of spe-
ci  c weight as well as unit weight in 
lieu of each other.

OUP_Ch01.indd   6 9/14/2010   11:21:16 AM

© Oxford University Press



Fundamentals of Fluid Mechanics 7

Table 1.6 Variation of specifi c weight 
with respect to temperature

Temperature 
(ºC)

Specifi c weight 
(kN/m3)

0 9.81

10 9.81

20 9.79

30 9.77

40 9.73

50 9.69

60 9.65

70 9.59

80 9.53

90 9.47

100 9.40

9.9
9.8
9.7
9.6
9.5
9.4
9.3

0 20 40 60
Temperature in °C

Graphical representation
in

 k
N

/m
3

80 100 120

γ

g

Fig. 1.5 Variation of specifi c weight with respect to temperature

The relationship between mass density, and speci  c weight is

 
r

g
g r� �g gor

 
(1.4)

Variations of speci  c weight are analogous to those of mass density, as described 
earlier. Table 1.6 shows variation of speci  c weight with respect to temperature and 
Table 1.7 shows speci  c weight at 20°C.

Table 1.7 Approximate physical-
property (specifi c weight) of some 
common liquids at 1 atmospheric 
pressure and at 20°C

Fluid g (kN/m3)

Water 9.81

Sea water 10.08

Mercury 133.1

Kerosene 8.03

Carbon tetrachloride 15.57

Glycerin 12.34

Gasoline 7.05

Benzene 8.62

Ammonia 8.13

Air 0.01182

OUP_Ch01.indd   7 9/14/2010   11:21:17 AM

© Oxford University Press



8 Fluid Mechanics and Machinery

Speci  c volume It is de  ned as the volume per unit mass of a  uid. It is usually 
denoted by .

 
V

V

ms = = 1 3

r
m kg/

 

(1.5)

Speci  c gravity It is a parameter that indicates how heavier is the given sub-
stance than water. It is de  ned as the ratio of the speci  c weight of the liquid to 
the speci  c weight of a standard  uid. It is denoted by . For liquids, the standard 
 uid is pure water at 4°C. So, 

 

S �
g

g

r

r
liquid

water

liquid

water

or  (1.6)

Speci  c gravity has no unit, i.e. it is a dimensionless quantity.
Though speci  c gravity is a dimensionless quantity, in SI units, the numerical 

value of the speci  c gravity of a substance is exactly equal to its density in g/cm3 
or kg/L (or 0.001 times density in kg/m3). For example, density of water at 4°C 
is 1 g/cm3 = 1 kg/L = 1000 kg/m3. The speci  c gravity of mercury at 0°C is 13.6. 
Therefore, its density at 0°C is 13.6 g/cm3 = 13.6 kg/L = 13,600 kg/m3. Table 1.8 
lists speci  c gravity at 20°C.

Relative density It is a dimensionless ratio of the densities of two materials. 
This term is similar to speci  c  gravity except that the reference material is water. 
Mathematically, relative density is expressed as

                    

G =
r

r
object

reference
                (1.7)

In Eqn (1.7), r is the density of the two 
materials in the same unit (e.g., kg/m3, 
g/cm3).

Relative density is a dimension-
less term, since it is a ratio between two 
quantities of the same unit. When the 
reference material is not speci  ed, it is 
usually understood to be water at 4°C.

It is to be noted that the relative 
density of an object relative to mercury 
is different from that with respect to 
water (speci  c gravity). The term spe-
ci  c gravity used in CGS and FPS units 
is the same as relative density. Relative 
densities for water and air are 1.00 and 
1.204 × 10−3, respectively.

Density of ideal gases (thermody-
namic properties) Gases are highly 
com pressible, and hence thermodynamic 

Table 1.8 Approximate physical 
property (specifi c gravity) of some 
common liquids at 1 atmospheric 
pressure and at 20°C

Fluids S

Water 1.0

Sea water 1.03

Mercury 13.6

Kerosene 0.82

Carbon tetrachloride 1.59

Glycerin 1.26

Gasoline 0.72

Benzene 0.88

Ammonia 0.83

Air 0.0013

Gold 19.2
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Fundamentals of Fluid Mechanics 9

properties play an important role. With the change of pressure and temperature, the 
gases undergo large variation in their density. It is convenient to have some simple 
relations among the properties that are suf  ciently general and accurate. Any equa-
tion that relates to the pressure, temperature, and density (or speci  c volume) of 
a substance is called an . The simplest and best-known equation 
of state for substances in the gas phase is the ideal gas equation of state and is 
expressed as

pV RT p RTs � �or r (1.8)

or 
p

RTr � (1.9)

where

= absolute pressure in N/m2

 = speci  c volume in m3/kg
 =  absolute temperature in °K (temperature scale in the SI system is the 

Kelvin scale and the temperature unit on this scale is the kelvin) = 273° +  
in °C

 = gas constant

The gas constant  is different for each gas, and is determined from  = / , 
where  is the universal gas constant (8.314 kJ/kmol K) and  is the molecu-
lar weight of the gas. The values of  and  for several substances are given in 
Table 1.9.
Then, mass density is given by

 

r � �
1 3

V

p

RTs

kg/m (1.10)

and weight density is given by

g r� �g
gp

RT
N/m3 (1.11)

As already mentioned, the gas constant  depends on the particular gas. The 
dimension of  is obtained as follows:
We know the relationship

pV RTs �

From that, we get
R

p

T
�

r

In SI units  is expressed in N/m2, r is expressed in kg/m3, and  is expressed in 
K. Therefore,

R � � �
N m

kg m K

N-m

kg-K

J

kg-K

/

/

2

3 ×

in SI = 287
J

kg-K
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10 Fluid Mechanics and Machinery

For an ideal gas of volume ∀, mass , and the number of moles  = / , the ideal 
gas equation of state can also be written as ∀ =  or ∀ = .

Another fundamental equation of a perfect gas between two state points is as 
given

 

p

T

p

T
1 1

1

2 2

2

∀ ∀
�  (1.12)

Table 1.9 Molecular weight and gas constant of some substances

Substance Molecular weight (M) Gas constant (R)

Air  28.97 0.2870

Ammonia  17.03 0.4882

Argon  39.95 0.2081

Bromine 159.81 0.05202

Isobutene 58.12 0.1430

n-butane 58.12 0.1430

Carbon dioxide 44.01 0.1889

Carbon monoxide 28.01 0.2968

Chlorine 70.905 0.1173

Ethane 30.070 0.2765

Ethylene 28.054 0.2964

Fluorine 38.0 0.2187

Helium 4.003 2.077

Hydrogen 2.016 4.124

Krypton 83.8 0.09921

Methane 16.04 0.5182

Neon 20.183 0.4119

Nitrogen 28.01 0.2968

Oxygen 32.0 0.2598

Propane 44.097 0.1885

Propylene 42.08 0.1976

Sulfur dioxide 64.06 0.1298

Tetra chloromethane 153.82 0.05405

Xenon 131.3 0.06332
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Fundamentals of Fluid Mechanics 11

Pressure Pressure or intensity of pressure is nothing but the compressive stress 
on a  uid and is given by

 
Pressure

Force

Area
for uniform pressure, ( )p

F

A
�  (1.13)

 
�

dF

dA
( )for variable pressure  (1.14)

The unit of pressure is N/m2 = Pa; Pa stands for pascal. Other commonly used 
units are kPa (kilopascal) = 1000 N/m2 and bar = 100 kPa = 105 N/m2.

Sometimes, the pressure is expressed in terms of the height  of an equivalent 
column of  uid of density r. Thus,

 p gh h� �r g  (1.15)

and  (meters of  uid) = /g. In such cases,  is called the pressure head.
For more details, the readers are advised to refer to Chapter 2.

Example 1.2 Calculate the speci  c weight, speci  c mass, speci  c volume, and 
speci  c gravity of a liquid having a volume of 6 m3 and weight of 44 kN.

Solution Given: Volume of liquid = 6m3, weight of liquid = 44 kN

 

g

r
g

� �

� � �

�

44

6
7 33

7 33

9 81
1000 747 19

. (

.

.
. (

kN/m )

kg/m )

3

3

Ans

g Ans

Vs

×

11 1
0 00134

0 747

3
r � �

� �

747.19
m kg )

7.33

9.81
)

. / (

. (

Ans

S Ans

Example 1.3 A volume of 2.5 m3 of certain liquid weighs 9.81 kN. Determine 
the speci  c weight, mass density, and speci  c gravity of the liquid.

Solution Given: Volume of liquid = 2.5 m3, weight of liquid = 9.81 kN
Therefore,

 

g

r

� � �

� � �

�

W

V
Ans

m

V
Ans

S

9 81

2 5
3 924

1000
400

.

.
. kN/m ( )

kg/m ( )

39

3

3

2.5
224

9810
)� 0 4. (Ans

Example 1.4 Determine the mass density, speci  c weight, and speci  c volume 
of a liquid whose speci  c gravity is 0.85.
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12 Fluid Mechanics and Machinery

Solution Given:  = 0.85; S � � �0 85
9 81

.
.

g

g

gliquid

water

liquid

Therefore,
 

gliquid kN/m (�8 3385 3. )Ans

But, r
g

� � �
g

Ans
8338 5

9 810
850

.

.
(kg/m )3

Specifi c volume,
 

V Anss � �
1

m kg )
r

0 00117 3. / (

Example 1.5 A mass of liquid weighs 500 N, corresponding to  = 9.81 m/s2. 
Find (a) its mass and (b) its weight in a planet with the acceleration due to gravity 
3.2 m/s2 and 20.0 m/s2.

Solution Let  = weight of liquid and  = mass of the same liquid
(a)  =  or 500 =  × 9.81
 Therefore,  = 50.96 kg ( )
(b)  Mass of the  uid remains constant, regardless of its location. Hence, 

 = 50.96 kg at all locations.

If 1 = 3.2 m/s2, 1 = 1 = 50.96 × 3.2 = 163.072 N ( )
If 2 = 20.0 m/s2, 2 = 50.96 × 20.0 = 1019.2 N ( )

Example 1.6 The variation in the density of water r with temperature  in the 
range 20°C    50°C is given in Table 1.10.

Table 1.10

r (kg/m3) 998.2 997.1 995.7 994.1 992.2 990.2 988.1

Temperature (ºC) 20 25 30 35 40 45 50

Use these data to determine an empirical equation of the form,

 r � � �A BT CT 2

This can be used to predict the density over the range indicated. 

Solution  Refer to Fig. 1.6.

 r �1001 0 053 0 004 2– . – . ( )T T Ans

Example 1.7 A gas weighs 20 N/m3 at 30°C and at an absolute pressure of 35 × 
104 N/m2. Determine the gas constant and density of the gas.

Solution  Given: weight density g = 20 N/m3

temperature  = 30°C

Therefore,  = 273 + 30 = 283°K
and pressure,  = 35 × 104 N/m2
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Fundamentals of Fluid Mechanics 13

But
  

r
g

� � �
g

Ans
20

9 81
2 0387 3

.
. ( )kg/m

From the relation pV RTs � ,
 
we get

 

R
p

T
Ans� �

�

�
�

.
. ( )

r

35 10

2 0387 283
606 64

4 J

kg-K

1.5 FLUID AS A CONTINUUM
Fluid  ows may be modeled either on a macroscopic level or on a microscopic 
level. The macroscopic model regards the  uid as a continuum and the description 
is in terms of variations of the macroscopic velocity, density, pressure, and tem-
perature with distance and time. On the other hand, the microscopic or molecular 
model recognizes the particulate structure of a  uid as a myriad of discrete mol-
ecules, and ideally, provides information on the position and velocity of every 
molecule at all times.

All  uids are composed of molecules in constant motion. However, in most 
of the engineering applications, we are interested in the average or the mean or 
the macroscopic effects of many molecules. It is these macroscopic effects that 
we can perceive and measure. We, thus, treat a  uid as an in  nitely divisible sub-
stance, a continuum, [continuum means that the distance between  uid particles 
(or molecules) or the mean free path is small (i.e., small compared to any physical 
dimensions of the problem)] and do not concern ourselves with the behavior of 
any individual molecules. The concept of a continuum forms the basis of classical 
 uid mechanics. The continuum assumption is valid in treating the behavior of 
 uids under normal conditions.

As a consequence of the continuum assumption, each  uid property is 
assumed to have a de  nite value at each point in space. Thus,  uid properties 
such as density, temperature, velocity, etc. are considered to be continuous func-
tions of position and time. To illustrate the concept of a property at a point, 
consider the manner in which we determine the density at a point. A region of 

Temperature in °C
0

1,000
998
996
994
992
990
988
986

10 20

= –0.0004t2 – 0.053t + 1001
R2 = 0.999

30 40 50 60

D
en

si
ty

 in
 k

g/
m

3

ρ

Fig. 1.6 Variation of mass density with respect to temperature
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14 Fluid Mechanics and Machinery

 uid is shown in Fig. 1.7(a). We are interested in determining the density at the 
point , whose coordinates are 0, 0, and 0. The density is de  ned as mass per 
unit volume. Thus, the mean or average density within the volume  would be 
given by r = m

v
.

In general, this will not be equal to the value of density at . To determine 
the density at , we must select a small volume , surrounding point , and then 
determine the ratio / . To answer the question, ‘How small can we make the 
volume ?’, let us take the ratio /  [Fig. 1.7(b)]. Then allow the volume 
to shrink continuously in size, assuming that the volume  is relatively large 
initially. The average density tends to approach an asymptotic value as the volume 
is shrunk to enclose only homogeneous  uid in the immediate neighborhood of 
point . When  becomes further small that it contains only few number of mol-
ecules, it becomes impossible to  x a de  nite value for / ; then the value will 
vary erratically as molecules cross into and out of the volume.

Thus, there is a lower limiting value of , designated as  shown in 
Fig. 1.7(b), which is allowable for use in de  ning  uid density at a point. The 
density at a point is de  ned as

 
r

d

dd d
� lim

v v

m

v→ ′
  (1.15)

Since the point  was arbitrary, the density at any point in the  uid could be deter-
mined in a similar manner. If density determination were made simultaneously 
at an in  nite number of point in the  uid, we would obtain an expression for the 
density distribution as a function of the space coordinates r = r( , , ), at the 
given instant of time. Thus, the complete representation of density is given by
r = r( , , , ). Since the density is a scalar quantity, the  eld representation is a 
scalar, representing only a magnitude.

Example 1.8 The mean free path l of the molecules in air is approximately 
given by

 
l� � �3 8 10 5.

T
p

Fig. 1.7 Defi nition of density at a point

c

(a) (b)

x v9

y

z

Volume v
of mass m

Volume   v
of mass    m

δ

vδ
δ

= lim
  v→  v9

m
v

ρ
δ δ δ

δ

m
vδ

δ

δ
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Fundamentals of Fluid Mechanics 15

where  is the temperature in K and  is the pressure in N/m2. The atmospheric 
temperature, pressure, and density at different altitudes are given in Table 1.11.

Calculate the mean free path at each altitude. If the  ow of air through a 
40-mm diameter pipe were to be considered, then state above what altitude the 
continuum approach will fail (i.e., the mean free path will be of the order of one-
hundredth of the pipe diameter).

Solution Use the relation l� � �3 8 10 5.
T
p .

Table 1.12 shows computed values of mean free 
path.

The continuum hypothesis, therefore, holds up 
to about 61 km ( ) 

 This example is only for illustrative pur-
pose. The value may be sensitive to the relation-
ship used for mean free path.

1.6 VISCOSITY
Viscosity is the most important among all properties, without which the diverse  eld 
of  uid mechanics of today might not have come into existence. Viscosity is derived 
from the word , which means sticky, adhesive, or tenacious. We say coconut oil 
is thin and castor oil is thick; when spilled over inclined surface the so-called thin oil 
 ows down faster compared to the thick oil. Obviously, the terms  and  do not 

refer to the density of the liquid but to the easiness with which it  ows. Similar to sol-
ids,  uids also offer resistance to shearing forces/stresses. It is primarily due to cohe-
sion (attraction between similar molecules) and the molecular momentum exchange 

Table 1.11 Atmospheric temperature, pressure, and density values at different 
altitude

Altitude (m) Temperature 
(ºC)

Pressure (N/m2) Density (kg/m3)

1800 3.0 81,000 1.025

4600 −14.7 57,000 0.77

8500 −40.0 33,000 0.493

14,000 −54.0 15,000 0.237

21,000 −54.0 4500 0.0715

31,000 −54.0 1000 0.0171

46,000 45.0 144 0.0016

61,000 71.0 32 0.00032

76,000 −22.0 5.5 0.000077

Table 1.12 Computed val-
ues of mean free path

Altitude (m) l (m)

1800 1.3 × 10−7

14,000 5.6 × 10−7

46,000 8.4 × 10−5

61,000 4.1 × 10−4

76,000 1.74 × 10−3
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16 Fluid Mechanics and Machinery

between  uid layers and as the  ow occurs, these effects appear as shearing stresses 
between the moving layers of a  uid. Hence, viscosity is a property of a  uid that 
determines the amount of this resistance to shearing stresses.

Viscosity may be de  ned in different ways. For example, it is a measure of the 
internal  uid friction that causes resistance to  ow or as a property of a  uid that offers 
resistance to the movement of one layer of  uid over another adjacent layer of the  uid 
or as a property of a  uid that determines its resistance to shearing stresses.

Newton’s law of viscosity states that for a given rate of angular deformation 
of  uid, the shear stress is directly proportional to the viscosity. The shear stress 
or shear resistance per unit area to a moving  uid is proportional to the velocity 
gradient in a direction normal to the area under consideration, in the same way as 
the stress in elastic solid is related to the strain component.

 
τ � �

F

A

u

y
a

�

�
 (1.16)

or τ � m
�

�

u

y
 (1.17)

where (mu), the constant of proportionality in Eqn (1.17), is called dynamic viscos-
ity or absolute viscosity of the  uid. The relationship given by Eqn (1.17) is called 
newton’s law of viscosity. Any  uid that obeys this law is called Newtonian  uid.

The velocity gradient �

�

u

y
 may be visualized as the rate at which one layer moves 

relative to an adjacent layer. Depending on the sign of velocity gradient, the direc-
tion of action of shear force changes. If the shear force acts in the direction of 
velocity, it is considered positive. It is evident from Eqn (1.17) that τ = 0 when 
�

�
�

u

y
0 . Hence, there would not be any shear force in uniform  ow or at the symmetry

of a  ow. The velocity gradient cannot be in  nite as it is not physically possible 
to have an in  nite value for the shear stress. Hence, the value of velocity gradient 
should change continuously without any jump throughout the  ow region includ-
ing the boundary. 

An ideal  uid has no viscosity. There is 
no  uid that can be classi  ed as a perfectly 
ideal  uid. However, the  uids with very little 
viscosity are sometimes considered as ‘ideal 
 uids’. In general, the viscosity of a  uid 

depends on both the temperature and pressure 
(Fig. 1.8), although the dependence on pres-
sure is rather weak. For liquids, both dynamic 
and kinematic viscosities are practically inde-
pendent of pressure and any small variation 
with pressure is usually ignored, except at 
extremely high pressures.

Viscosity of liquids varies inversely 
with temperature (because in liquids the 

Liquids 

Gases

Temperature

Viscosity 

Fig. 1.8  The viscosity of liquids 
decreases and the viscos-
ity of gases increases with 
temperature

OUP_Ch01.indd   16 9/14/2010   11:21:20 AM

© Oxford University Press



Fundamentals of Fluid Mechanics 17

shear stress due to intermolecular cohesion decreases with the increase in tem-
perature), while viscosity of gases varies directly with temperature. (In gases, the 
intermolecular cohesion is negligible and the shear stress is due to the exchange 
of momentum of the molecules, normal to the direction of motion. The molecular 
activity increases with temperature and hence the shear stress and also the viscos-
ity of gases will increase with the increase in temperature.)

The kinetic theory of gases predicts the viscosity of gases to be proportional 
to the square root of the temperature, i.e.,

 
mgas � T

This prediction is con  rmed from the practical observations; however, some gases 
need correction factors because of some deviations. 

The relation between viscosity and temperature for liquids and gases are as 
follows.

Sutherland correlation (from the US standard atmosphere)
1. For gases

 

m
a

b
�

�

T

T

1 2

1

/

 (1.18)

where  is the absolute temperature, and  and  are experimentally determined 
constants. For air, values of these two constants are

 = 1.458 × 10−6 kg/(ms K1/2) and  = 110.4 K at atmospheric conditions
2. For liquids, the viscosity is approximated as

 m a b/ g� 10 T –

  (1.19)

where again  is absolute temperature and , , and g are experimentally deter-
mined constants. For water,  = 2.414 × 10−5 Ns/m2,  = 247.8 K, and g = 140 K, 
results in less than 2.5% error in viscosity in the temperature range of 0°C to 
370°C (Touloukian et al., 1975)
Other relations are given below.
1. For liquids

 

m m�
�� �	0 2

1

1 t t

⎛
⎝⎜

⎞
⎠⎟

poise
 

 (1.20)

where m = viscosity of liquid at °C in poise, m0 = viscosity of liquid at 0°C in 
poise, and j and z are constants for the liquid.

For water, m0 =1.79 × 10−3 poise, j = 0.03368, z = 0.000221
Once again from the above equation, one can infer that with the increase of 

temperature the viscosity of liquids decreases.
2. For gases

 
m m� �� 	0

2t t– poise   (1.21)

where for air c0 = 0.000017, j = 0.000000056, and z = 0.1189 × 10−9
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18 Fluid Mechanics and Machinery

Once again, from Eqn (1.21), one can infer that with the increase in tempera-
ture the viscosity of gases increases.
3. Helmholtz suggested the following expression for water in CGS units:

 
m �

� �

0 01776

1 0 03368 0 000221 2

.

. .T T
poise   (1.22)

where  is the temperature in °C.
To quantify viscosity for mathematical manipulation, consider a  uid con-

 ned between two parallel plates as shown in Fig. 1.9. The upper plate is moving 
at a velocity , and the distance between the plates is denoted by . The layer of 
 uid in contact with the upper (moving) plate will move with the same velocity 

as the plate (i.e., ), whereas the layer in contact with the lower (  xed) plate will 
have a zero velocity.

Fig. 1.9

The rate of change of velocity 
= (u+du–u)/dy 

= du/dyy

u

dy

Lower plate (stationary) 

Upper plate (moving)

U+du

u

If a linear velocity gradient is assumed, as indicated in Fig. 1.9, and if the 
shearing stress in the  uid is assumed to be proportional to the rate of change 
of velocity (newton’s law of viscosity), the shearing stress (Fig. 1.10) may be 
expressed as follows:

 
τ � m

U

y  
(1.23)

Dynamic and kinematic viscosity
The proportionality factor for the vis-
cous  uid, as given in Eqn (1.23), is 
called dynamic or absolute viscosity.
Therefore,

  
m �

τ
du

dy

N

m
m

s m

Ns

m
ps

2

21×
= ( )  (1.24)

 m for water = 1.75 × 10−3 Ns/m2
 

The unit of viscosity in CGS is called 
poise [one poise = (1/10) Ns/m2].

Viscosity = slope
μ = 

Oil  

Water  

Air  

a

b

Sh
ea

r s
tre

ss

Rate of deformation 

τ =du
dy

a
b

Fig. 1.10  The rate of deformation of a 
Newtonian fl uid is proportional 
to the shear stress
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Fundamentals of Fluid Mechanics 19

Kinematic viscosity It is de  ned as the ratio between the dynamic viscosity and 
density of  uid.

 
n

m
r�

m2

s
 

(1.25a)

 for water: 1.75 × 10−6  m s2/

The unit of kinematic viscosity in CGS is called stoke.
Thus, 1 stoke = 10−4 m2/s

As the water temperature range of the data is considerable, one requires relationship 
for kinematic viscosity as a function of temperature . Streeter and Wylie (1979) 
have given an equation through which one can determine the kinematic viscosity.

 

n � � ��

�

1 792 10 1
25

6

1 165
1

.
.

T⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 (1.25b)

Here  is in m2/s and  = water temperature in °C. The maximum percentage of 
error in using Eqn (1.25b) is 2.2%.

1.6.1 No-Slip Condition of  Viscous Fluids

When a viscous  uid  ows over a solid surface, the  uid elements adjacent to 
the surface attain the velocity of the surface. In other words, the relative velocity 
between the solid surface and adjacent  uid particles is zero. This phenomenon has 
been established through experimental observations and is known as the  
conditions. Thus, the  uid elements in contact with a stationary surface have zero 
velocity. This behavior of no-slip at the solid surface should not be confused with 
wetting of surfaces by the  uids. For example, mercury  owing in glass tube will 
not wet the surface, but will have zero velocity at the wall of the tube. The wetting 
results due to surface tension, whereas, the no-slip condition is a consequence of 
 uid viscosity. Table 1.13 shows the variation of dynamic viscosity and kinematic 

Table 1.13 Variation of dynamic viscosity and kinematic viscosity 
with respect to temperature

Temperature 
(ºC)

Dynamic viscosity 
(Ns/m2)

Kinematic viscosity 
(m2/s)

0 1.75 × 10−3 1.75 × 10−6

10 1.30 × 10−3 1.30 × 10−6

20 1.02 × 10−3 1.02 × 10−6

30 8.0 × 10−4 8.03 × 10−7

40 6.51 × 10−4 6.56 × 10−7

50 5.41 × 10−4 5.48 × 10−7

60 4.6 × 10−4 4.67 × 10−7

70 4.02 × 10−4 4.11 × 10−7

80 3.5 × 10−4 3.6 × 10−7

90 3.11 × 10−4 3.22 × 10−7

100 2.82 × 10−4 2.94 × 10−7
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20 Fluid Mechanics and Machinery

viscosity with respect to temperature and Table 1.14 gives the values for some com-
mon  uids at 20°C.

Speci  c viscosity It is the ratio of viscosity of  uid to the viscosity of water at 20°C.

Example 1.9 From a table of the properties of liquids it was found that at 20°C 
carbon tetrachloride had a dynamic viscosity of 9.67 × 10−4 Pas and a kinematic 
viscosity of 6.08 × 10−7 m2/s. Calculate its speci  c gravity and weight density.

Solution Given: m n

r
m

n

g r

� � � �

� �

� � �

� �9 67 10 6 08 10

1590 46

159

4 2 7 2

3

. , . /

.

Ns/m m s

kg/m

g 00 46 9 81 15 602

1 596

3. . . ( )

. ( )

� �

� �

kN/m

liquid

water

Ans

S Ans
g

g

Table 1.14 Values of dynamic viscosity and kinematic viscosity for 
some common fl uids at 20°C and 1 atmospheric pressure

Fluids Dynamic viscosity 
(Ns/m2)

Kinematic viscosity 
(m2/s)

Liquids

Water 1.00 × 10−3 1.00 × 10−6

Sea water 1.07 × 10−3 1.04 × 10−6

Gasoline 2.92 × 10−4 4.29 × 10−7

Kerosene 1.92 × 10−3 2.39 × 10−4

Glycerin 1.49 × 10−3 1.18 × 10−3

Mercury 1.56 × 10−3 1.15 × 10−7

Castor oil 9.80 × 10−1 1.02 × 10−3

Gases

Air 1.80 × 105 1.494 × 105

Carbon dioxide 1.48 × 105 0.804 × 105

Hydrogen 0.90 × 105 10.714 × 105

Nitrogen 1.76 × 105 1.517 × 105

Methane 1.34 × 105 2.00 × 105

Oxygen 2.00 × 105 1.504 × 105

Water vapor 1.01 × 105 1.352 × 105
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Fundamentals of Fluid Mechanics 21

Example 1.10 A volume of 3.2 m3 of certain oil weighs 27.5 kN. Calculate its 
mass density, weight density, speci  c volume, and speci  c gravity. If kinematic 
viscosity of the oil is 7 × 10−3 stokes, what would be its dynamic viscosity in 
 centipoises?
Solution Given V W� � � � �3 2 27 5 7 103 3. , . ,m kN and stokesn

1 stoke = 10−4 m2/s

 

g

r
g

r

� �

� �

� � � �

W

V
Ans

g
Ans

V

8 59

876 01

1
1 14 10

3

3

3 3

. ( )

. (

. /

kN/m

kg/m )

ms kkg )

centipoise ( )

oil

water

(

. ( )

.

Ans

S Ans

Ans

� �

� �

g

g

m n r

0 87

6 132×

Example 1.11 Glycerin has a density of 1260 kg/m3 and a kinematic viscosity 
of 0.00183 m2/s. What shear stress is required to deform this  uid at a strain rate 
of 104/s?
Solution Given  r

n

�

�

� �

1260

0 00183

10

3

2

4 1

kg/m

m s

s

. /

du

dy

Therefore,  τ � � �nr
du

dy
Ans1260 0 00183 10 23 0584× ×. . kPa ( )

 
Example 1.12 A liquid has a speci  c gravity of 1.9 and a kinematic viscosity of 
6 stokes. What is its dynamic viscosity?

Solution Given  = 1.9, kinematic viscosity = 6 stokes = 6 × 10−4 m2/s

 
r rliquid water kg/m� � � � �S 1 9 1000 1900 3.

But,
 

n
m

r
�

Therefore, m � � ��1900 6 10 1 144 2× . ( )Ns/m Ans

Example 1.13 The velocity distribution of  ow over a plate is parabolic, with 
vertex 0.3 m from the plate (Fig. 1.11), where the velocity is 1.8 m/s. If the vis-
cosity of the  uid is 0.9 N s/m2,  nd the velocity gradients and shear stresses at 
distances 0 m, 0.15 m, and 0.3 m from the plate.
Solution The equation for velocity pro  le is given by

 u ly my n� � �2
 (1.26)

 where , , and  are constants.
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22 Fluid Mechanics and Machinery

Applying the boundary conditions to 
Eqn (1.26), we get

At   = 0;  = 0; therefore, Eqn (1.26) 
becomes, 0 = 0 + 0 +  or  = 0

At  = 0.3 m, /  = 0; therefore, 
/  = 2 l +

 0 = 2 × l × 0.3 + m (1.27)

At  = 0.3 m,  = 1.8 m/s; therefore,

 1.8 = l × 0.32 + m (1.28)

Solving Eqns (1.27) and (1.28), we get

 = −20,  = 12

Therefore, the velocity pro  le will be

 u y y� �–20 122

and
 

du

dy
y� �– 40 12

To  nd the velocity gradient,

 

du

dy
Ans

du

dy
Ans

du

dy
An

y

y

y

| s (

| s ( )

| s

.

.

�
�

�
�

�
�

�

�

�

0
1

0 15
1

0 3
1

12

6

0

)

( ss)

To  nd the shearing stress,

 

τ

τ

τ

| |

| . . ( )

| . ..

y y

y

y

du

dy

Ans

� �
�

� �

�

0 0

0
2

0 1

0 9 12 10 8

0 9 6 5

m

= = N/m

5�
� � 44

0 9 0 0

2

0 3

N/m )

)

(

| . (.

Ans

Ansyτ
�

� ��

Example 1.14 The velocity ( ) at radius  in a pipe of radius 0 is given in terms 
of center line velocity ( ) for laminar  ow as

 

v
v

r

rc
� �1

0

2
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Vertex

Plate

Velocity 
distribution 

0.3 m

u = 1.8 m/s 

u = 0
x

y

Fig. 1.11 Velocity profi le for Example 1.13
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If the centerline velocity in a pipe of 1 m diameter is 6 m/s, and the velocity is 0.002 
Ns/m2, draw the velocity and shearing stress pro  le (Figures 1.12 and 1.13) for a 
cross section.

Solution Given v

v

r

rc

� �1
0

2
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

or v r� �6 1
0 5

2

.{ }⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Therefore, v r

dv

dr
r r

� �

�� ��

6 24

24 2 48

2, .which gives velocity profile

×

Velocity profile
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Fig. 1.12 Velocity profi le for Example 1.14

0.5

0.4

0.3

0.2

0.1

0
0 0.02 0.03 0.04 0.05 0.06

–0.1

–0.2

–0.3

–0.4

–0.5
Shear stress in N/m2

R
ad

ia
l d

is
ta

nc
e 

in
 m

0.01

Fig. 1.13 Shear stress distribution for Example 1.14
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τ �� �� �� �

�

m
dv

dr

du

dy

dv

dr
r

r

because

gives sh

0 002 48

0 096

. ( )

. , which eearing stress profile.

Table 1.15 gives computed values for velocity pro  le and shear stress pro  le.

Table 1.15 For Example 1.14

R v t Remarks

0 6 0
Centerline 

velocity

0.1 5.76 0.0096

0.2 5.04 0.0192

0.3 3.84 0.0283

0.4 2.16 0.0384

0.5 0 0.048 Boundary

Example 1.15 A  uid of absolute viscosity 8 poise  ows past a  at plate and 
has a velocity 1 m/s at the vertex, which is at 0.2 m from the plate surface. Make 
calculations for the velocity gradients and shear stress at points 0.05, 0.1, and 
0.15 m from the boundary. Assume (a) 
a straight-line velocity distribution and 
(b) a parabolic distribution.

Solution (a) For a straight-line veloc-
ity distribution, the velocity gradient 
(Table 1.16 and Fig. 1.14) at the bound-
ary, that is, at  = 0, is

            

du

dy

du

dy

�
�

�
�

� � �

�
100 0

20 0
5

0 8 5 4

1s

N/m2τ m . ×

(b) The parabolic velocity distribution 
can be prescribed by the relation

u ly my n� � �2

and  du

dy
ly m= +2

Applying boundary conditions, we get

u y n u y
du

dy
y� � � � � � �0 0 0 1 0 2 0 0 02at m/s at m; at m, ; . .

Now, we get   = −0.25 and  = 10

0.2 m/s

0.1 m/s 

Linear

Parabolic 

Fig. 1.14  Velocity distribution for 
Example 1.15

Table 1.16 Velocity gradient and 
shear stress values

Location Velocity 
gradient

Shear 
stress

Y = 0 10 8

Y = 0.05 7.5 6

Y = 0.1 5.0 4

Y = 0.15 2.5 2
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Fundamentals of Fluid Mechanics 25

Therefore,  u y y
du

dy
y�� � �� �0 25 10 0 5 102. .and

Example 1.16 Air at 20°C forms a boundary layer near a solid wall of sine 
wave-shaped velocity pro  le [  = max sin(p /2d)]. The boundary layer thickness 
is 6 mm and the peak velocity is 10 m/s. Compute the shear stress in the boundary 
layer at  equal to (a) 0, (b) 3 mm, and (c) 6 mm. Consider the dynamic viscosity 
of air as 1.81 × 10−5.

Solution  Shear stress is given by τ � m
dv

dy

Given v v
y

� max sin
p

d2
⎡
⎣⎢

⎤
⎦⎥

so that dv

dy

v y

y

�

�

p

d

p

d
max cos

cos( . )

2 2

2618 261 8

⎡

⎣
⎢

⎤

⎦
⎥

⎡
⎣⎢

⎤
⎦⎥

At  = 0, τ � �0 04739 261 8 0 0 0474 2. cos{ . ( )} . N/m  ( )

At  = 3 mm, τ � 0 0335 2. )N/m (Ans

At  = 6 mm, τ � 0 ( )Ans

Example 1.17 A large plate moves with a speed  over a stationary plate on a layer 
of oil as shown in Fig. 1.15. If the velocity pro  le is that of a parabola ( 2 = ), with 
the oil at the plates having the same velocity as the plates, what is the stress on the 
moving plate from the oil? If a linear pro  le is assumed, what is the shear stress on the 
upper plate?

Solution For a parabolic pro  le, 2 = , where  = ,  = 
Thus, 2 = 

Therefore, a
U

d
�

2

Fig. 1.15  Velocity distribution for 
Example 1.16

10 m/s
Peak

Sine wave
6 mm

Fig. 1.16 Velocity distribution for Example 1.17

Oil layer

Assumed profile

d

u
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26 Fluid Mechanics and Machinery

Therefore, u
U

d
y U

y

d
2

2
2� �× ⎡

⎣⎢
⎤
⎦⎥

or

 

u U
y

d

du

dy
U

d
y

�

� �1 1

2
1 2⎧

⎨
⎩

⎫
⎬
⎭

⎧
⎨
⎩

⎫
⎬
⎭

⎡

⎣
⎢

⎤

⎦
⎥

/

τ� � �m m
du

dy
U

d
y

1 1

2
1 2⎧

⎨
⎩

⎫
⎬
⎭

⎧
⎨
⎩

⎫
⎬
⎭

⎡

⎣
⎢

⎤

⎦
⎥

/

For y = d, τ �
mU

d
Ans

2
( )

For a linear pro  le, 
du

dy

U

d
�

Therefore, τ � m
U

d
Ans( )

Example 1.18 Water is moving through a pipe. The velocity pro  le at some sec-
tion is shown in Fig. 1.17 and is given mathematically as

 
u

d
r� �

b

m4 4

2
2⎡

⎣⎢
⎤
⎦⎥

where  = velocity of water at any position , b = a constant, m = viscosity of 
water,  = pipe diameter, and  = radial distance from centerline. What is the shear 
stress at the wall of the pipe due to the water? What is the shear stress at a position 
 = /4? If the given pro  le persists for a distance  along the pipe, what drag is 

induced on the pipe by the water in the direction of  ow over this distance?

Solution Given, velocity pro  le as u
d

r� �
b

m4 4

2
2⎡

⎣
⎢

⎤

⎦
⎥

⎡
⎣⎢

⎤
⎦⎥

So, 
du

dr
r

r
� � �

�b

m

b

m4
2

2

4

⎡

⎣
⎢

⎤

⎦
⎥ ( )

Velocity profile

r

d u

Fig. 1.17 Velocity distribution for Example 1.18
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Shear stress is given by   τ � �
�

m
bdu

dr

r2

4
At the wall  = /2. 

Hence τwall �

�

��

2
2

4 4

b
b

d
d

⎛
⎝⎜

⎞
⎠⎟ ( )

At  = /4, τr d

d
Ans

�
��/4

b

8
( )

 Drag = ( )( ) ( / )( ) ( ) / ( )τwall area � �b p b pd dL d L Ans4 42

Example 1.19 A plate weighing 150 N and measuring 0.8 m × 0.8 m slides down 
an inclined plane over an oil  lm of 1.2 mm thickness. For an inclination of 30° 
and a velocity of 0.2 m/s, compute viscosity of the  uid.

Solution We have from newton’s law of viscosity τ � m
du

dy

But τ � �
�

force

area
150

30

0 8 0 8
sin

. .

°  = 117.19 N/m2

30°

30°
1.2 mm 

150N 

150 cos 30°

150 sin 30°

Plate

Inclined plane

Oil film

Horizontal surface

Fig. 1.18

Rate of deformation, /  = (0.2 − 0)/0.12 = 166.67/s1

Therefore, m � �
τ

du

dy

Ans0 7 2. (Ns/m )

Example 1.20 The space between two parallel plates 5 mm apart is  lled with 
crude oil (Fig. 1.19). A force of 2 N is required to drag the upper plate at a constant 
velocity of 0.8 m/s. The lower plate is station-
ary. The area of the upper plate is 0.09 m2. 
Determine the dynamic viscosity and kine-
matic viscosity of the oil, if the speci  c grav-
ity of the oil is 0.9.

Solution We have from newton’s law of 

viscosity τ � m
du

dy

Stationary

Moving 

plate

5 mm

u = 0.8 m/s 

Fig. 1.19
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28 Fluid Mechanics and Machinery

τ� �

� �
�

�

�

�

m

m

m

F A
du

dy
A

Ans

⎧
⎨
⎩

⎫
⎬
⎭

2
0 8

5 10
0 09

0 139

3

2

.
.

. (Ns/m ))

.
. / ( )n

m

r
� � � � �

0 139

900
1 54 10 4 2m s Ans

Example 1.21 A  at plate weighing 
0.45 kN has an area of 0.1 m2. It slides 
down an inclined plane at 30° to the hori-
zontal (Fig. 1.20) at a constant speed of 
3 m/s. If the inclined plane is lubricated 
with an oil of viscosity 0.1 Ns/m2,  nd 
the thickness of the  lm.

Solution We know from newton’s law of viscosity,

 
τ � m

du

dy

Here, out of 0.45 kN (450 N), only tangential component (450 × sin 30°) is shear-
ing force. Therefore, shear stress will be equal to 450 × sin 30°/0.1.

450 30

0 1
0 1

3�
� �

sin

.
.

° ⎛

⎝
⎜

⎞

⎠
⎟

dy

Therefore,
dy � 0 133. mm ( )

Example 1.22 A block weighing 1 kN and 
having dimensions 200 mm on an edge is 
allowed to slide down and incline on a  lm of 
oil having a thickness of 0.005 mm, as shown 
in Fig. 1.21. If we use a linear velocity pro  le in 
the oil, what is the terminal speed of the block? 
The viscosity of the oil is 7 × 10−3 Ns/m2.

Solution From newton’s law of viscosity, we have

 

τ

τ

� � � �

� �

�m
n

n

n

du

dy

F A

T
T

f T

7 10
0 005

1000

1400

1400
20

3

.

{ }

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

00

1000
56 0

2
⎧
⎨
⎩

⎫
⎬
⎭

� . nT

At the terminal condition, equilibrium occurs.

30° 

u = 3 m/s 

0.45 kN 
μ = 0.1 Ns/m2

Fig. 1.20 

Fig. 1.21

30°

0.005 mm 
1 kN
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Hence, 1000 × sin 30° = 56.0 
or  = 8.93 m/s ( )

Example 1.23 As shown in Fig. 1.21, if the 
 uid is glycerin at 20°C and the width between 

the plates is 6 mm, what shear stress is required 
to move the upper plate at 2.5 m/s? What is the 
Reynolds number, if  is taken to be the distance 
between the plates (Fig. 1.22)?

Solution We know from newton’s law of  viscosity

τ � m
du

dy

At y = d, τ = = =

= = × ×

m

r
m

du

d d
Ans

N
du

R

( )
.

.
( )

.

1 49
2 5
6

1000

621

1258
6

1000

2 5

1

2N/m

..
. ( )

49
12 7= Ans

Example 1.24 A circular disc of diameter  is rotated in a liquid of viscosity  at a 
small distance  from a  xed surface (Fig. 1.23). Derive an expression for the torque 

, necessary to maintain an angular velocity . Neglect the centrifugal effect.

Solution The velocity of the bottom of the disc is a function of the radius and so 
is the rate of deformation and shear stress. 
Shear stress at any radius  is given by

τ � �m m
v

D

du

dy

r

h

y

d

U = 0

u = U 

Fig. 1.22

∆h

Fixed plate 

dr

ωr

D

r

Fig. 1.23
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30 Fluid Mechanics and Machinery

Consider a ring of radius  and width . The shear forces in the ring is given by

D τ p m
D

p
pm

D
F r dr

r
r

h
r dr� � � � � �2 2

2 2

h
r d� �


 


The differential torque,  =  × � � � � �
2 22 3pmv

D

pmv

Dh
r dr r

h
r dr

Integrating, we get the total torque.

T
h

r dr
D

h
Ans

r

r
� � �

�

� 2

32
3

0

2 4pmv

D

pmv

D

u/

∫ Nm ( )

Example 1.25 A solid cone of radius 
0 and  vertex angle 2  is to rotate at an 

angular velocity  (Fig. 1.24). An oil 
of viscosity  and thickness   lls the 
gap between the cone and the  housing. 
Determine the torque  to rotate the 
cone.

Solution Shear stress on the inclined wall, τ � � � � �m m m
vdu

dy

V

h

r

h

Considering an elemental area, 2p
u

r
dr

dA� �
sin

Differential torque, dT rdF r r
dr

r
r

h
r

dr

h

� �

 � � � �

 ( )
sin

sin si

τ2

2
2 1

p
u

m
v

p
u

m
pv⎡

⎣⎢
⎤
⎦⎥ nnu

r dr3

Torque  is given by T dT
h

r dr

T
h

r Ans

r r
� � �

�

0

3

0

0
4

0 02

2

∫ ∫
pvm

u

pvm

u

sin

sin
( )

Example 1.26 Inside a 60-mm diameter cylinder a piston of 59 mm diameter 
rotates concentrically. Both the cylinder and piston are 80 mm long (Fig. 1.25). If the 

h
Oil

2

r0

θ

ω
dr

ds
θ

r

Fig. 1.24

Piston Cylinder

D = 60 mmd = 59 mm

L = 80 mmdy = 0.0005 mm

Fig. 1.25 Longitudinal section of piston and cylinder 
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space between the cylinder and piston is  lled with oil of viscosity of 0.3 Ns/m2 and 
a torque of 1.5 Nm is applied,  nd the rpm of the piston and the power required.

Solution Given:  = 60 mm,  = 59 mm,  = 80 mm,  = 0.0005 m, and torque 
 = 1.5 Nm

We know that
Torque = shear force × /2

or 1.5 =  × 0.059/2
Therefore,  = 50.85 N

But F dL� � � �τ τarea p

whereas τ � m
du

dy

Therefore, τ � �

� � � � � �

�

0 3
0 0005

0 3
0 0005

0 059 0 08
0 059

2

5 72

.
.

.
.

. .
.

.

u

F
u

u

⎡
⎣⎢

⎤
⎦⎥

p

mm/s

But u
dN

�
p

60

From this, we get  = 1849.5 rpm
But

p T� � � � � � �
2

60
1 5 2

1849 5

60
290 5

p
p

N
W.

.
.

Example 1.27 A cylinder of 0.12 m radius rotates concentrically inside a  xed 
hollow cylinder of 0.13 m radius. Both the cylinders are 0.3 m long. Determine 
the viscosity of the  uid that  lls the space between the cylinders if a torque of
0.88 Nm is required to maintain an angular velocity of 2p rad/s.

Solution The torque applied = the resisting torque by the  uid
= shear stress × surface area × torque

Hence, at any radial location  from the axis of rotation

or 

0 88 2 0 3

0 467
2

. ( . )

.

� � �

�

τ

     τ

pr r

r

We have τ � m
nd

dy

Therefore, 
τ

� �
n

m m

d

dy r

0 467
2

.

or

or
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Rearranging the above expression and substituting (− ) in place of  (the minus 
sign indicates that , the radial distance, decreases as  increases), we obtain

 
dv

dr

rv

v 0 467
20 13

0 12.
.

.

mouter

inner∫ ∫ −

Hence,

But

           

(   )

= 0.754 m/s (

inner outer

inner

v v
r

v

− ⎧
⎨
⎩

⎫
⎬
⎭

�
0 467 1

0 13

0 12
.

.

.

m

22    0.12)

 = 0 m/s ( )outer

× ×

− −

p

v fixed

( . ) .

.
0 754 0

0 467 1

0 12

1
�

m 00 13

0 397

.

. (

⎡
⎣⎢

⎤
⎦⎥

m � Pas )Ans

Example 1.28 A dash pot 12 cm in diameter and 15 
cm long slides vertically down into an annulus of 12.05 
cm diameter cylinder (Fig. 1.26). The oil that  lls the 
annular space has a viscosity of 1 poise. Find the speed 
with which the piston slides down if load of the piston 
is 15 N.

Solution Since the space between the dash pot and the 
cylinder is very small, that is, the oil  lm is thin, we can 
assume that /  = / , where  is the velocity of piston 
and  is the oil  lm thickness.

Shear stress, τ � �m m
du

dy

u

t

⎧
⎨
⎩

⎫
⎬
⎭

Shear or viscous force = τ × area � m p
u

t
rl( )2

Here,  = 6 cm = 0.06 m,   = 0.1 Ns/m2,
 = 0.00025 m, viscous force =15 N.

Therefore,  = 0.663 m/s ( )

Example 1.29 A 1.5 cm wide gap between two 
vertical plane surfaces is  lled with an oil of spe-
ci  c gravity 0.9 and dynamic viscosity 2.0 Ns/m2. 
A metal plate 1.0 m × 1.0 m × 0.1 cm thick and weigh-
ing 20 N is placed midway in the gap (Fig. 1.27). Find 
the force required if the plate is to be lifted up with a 
constant velocity of 0.1 m/s.

or

12.05 cm 

15 N 15 cm

12 cm

Fig. 1.26

t2t1

0.1 cm

1.5 cm

Fig. 1.27

Therefore, substituting the above values, we get
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Solution The shear stresses on two sides of the plate are as given

  τ τ1
1

2
2

� � �m m m
du

dy

v

t

v

t
and

Drag force or viscous resistance against the motion of the plate is given by

 

F
v

t

v

t
A

Av
t t

� �

� �

m m

m

1 2

1 2

1 1

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

Since the plate is midway in the gap, 1 = 2.

Therefore, F
Av

t
� 2

m

But
 

t �
�

�
1 5 0 1

2
0 7 0 007

. .
. .cm or m

Therefore, F �
� � � �

�
2 2 0 1 0 1 0 0 1

0 007
57 14

. . . .

.
. N

Upthrust or buoyant force on the plate = speci  c weight × volume of oil displaced

 � � � � � �0 9 9810 1 0 1 0 0 001 8 829. . . . . N

Effective weight of the plate = 20 − 8.829 = 11.171 N
Therefore, the total force required to lift the plate at the given velocity

 � � �57 14 8 829 65 97. . . )N (Ans

Example 1.30 Two large  xed parallel planes are 12 mm apart. The space between 
the surfaces is  lled with an oil of viscosity 0.9 N s/m2. A  at thin plate 0.2 m2 area 
moves through the oil at a velocity of 0.25 m/s.

Calculate the drag force
 1. when the plate is equidistant from both the planes (Fig. 1.28)
 2. when the thin plate is at a distance of 3.5 mm from one of the plane surfaces 

(Fig. 1.29).

12 mm

6 mm

6 mm

Plate
0.25 m/s

1

2

Fixed parallel plate

Fixed parallel plate

Fig. 1.28
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Solution Distance between the  xed parallel planes = 12 mm = 0.012 m
 Area of thin plate  = 0.2 m2, velocity of plate = 0.25 m/s, viscosity of oil 
 = 0.9 Ns/m2, and drag force = ?

 1. When the plate is equidistance from both the planes

 

τ

τ

τ

1 1
2

1 1

2

0 9
0 25

0 006
37 5

37 5 0 2 7 5

� � � �

� � � � �

�

m

m

du

dy

F A

| .
.

.
.

. . .

N/m

N

ddu

dy
F

F Ans

| . .

. .

2
2

237 5 7 5

7 5 7 5 15

� �

� � �

N/m and N

N ( )

 2. When the plate is at 3.5 mm from one of the  xed plates

F A
du

dy
A

F A
du

dy
A

1 1 1

2 2

0 9
0 25

0 0085
0 2 5 29

0

� � � � � �

� � �

τ

τ

m

m

| .
.

.
. .

| .

N

2 99
0 25

0 0035
0 2 12 857� � �

.

.
. . N

 Total force, F F F Ans� � � � �1 2 5 29 12 857 18 147. . . N ( )

1.7  VAPOR PRESSURE OF LIQUIDS (PV) AND 
CAVITATIONS

We will  rst explain vapor pressure.

1.7.1 Vapor Pressure
All liquids and solids have a tendency to evaporate to a gaseous form, and all gases 
have a tendency to condense back into their original form (i.e., either liquid or 
solid). Liquids have a property of releasing their molecules into the space above 
their surface. The liquid is then said to be vaporized or evaporated. Evaporation 
occurs at the surface of the liquid. If the surface is exposed to the atmosphere, 
evaporation generally occurs continuously. If, however, the surface is within an 
enclosed space, evaporation will occur only until the air within the enclosed space 
becomes saturated with vapor. Pressure caused by vapor molecules within such 

12 mm

3.5 mm

8.5 mm

0.25 m/s
Plate

1

2

Fixed parallel plate

Fixed parallel plate

Fig. 1.29
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a closed space is called vapor pressure. Thus, vapor pressure is the pressure of a 
vapor in equilibrium with its non-vapor phase.

Vapor pressure increases with increase in temperature. At any given tempera-
ture, for a particular substance, there is a pressure at which the gas of that sub-
stance is in dynamic equilibrium with its liquid or solid forms. This is known as 
vapor pressure of the substance at that temperature.

The vapor pressures of some liquids at 20°C are given in Table 1.17 and the 
variation of water with respect to temperature is given in Table 1.18.

Equilibrium vapor pressure is an indication of a liquid’s evaporation rate. It 
relates the tendency of molecules and atoms to escape from a liquid or a solid. A 
substance with a high vapor pressure at normal temperature is often referred to as a 
volatile substance. According to the Clausius–Clapeyron relation, the vapor pres-
sure of any substance increases non-linearly with temperature (Fig. 1.30).

1.7.2 Boiling Point

The boiling point of a liquid is the temperature at which the vapor pressure of the 
liquid equals the environmental pressure surrounding the liquid.

A liquid in vacuum environment has a lower boiling point than when it is at 
atmospheric pressure and a liquid in a high-pressure environment has a higher 
boiling point than when the liquid is at atmospheric pressure. In other words, all 
liquids may have many number of boiling points.

The normal boiling point (also called the atmospheric boiling point or the atmos-
pheric pressure boiling point) of a liquid is the special case at which the vapor pres-
sure of the liquid equals the ambient atmospheric pressure. At that temperature, 

Table 1.17 Vapor pressures of 
some liquid at 20°C

Liquids Vapor pressure 
(kN/m2)

Water 2.34

Sea water 2.34

Carbon tetra-
chloride

12.1

Benzene 10.0

Mercury 0.0000017

Gasoline 55.0

Kerosene 3.11

Ammonia 910

Glycerin 0.000014

Table 1.18 Variation of vapor pres-
sure with respect to temperature

Temperature 
(ºC)

Vapor pressure 
(kPa)

0 0.611

10 1.23

20 2.34

30 4.24

40 7.38

50 12.3

60 19.9

70 31.2

80 47.4

90 70.1

100 101.3
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the vapor pressure of the liquid becomes suf  cient to overcome the atmospheric 
pressure and lift of the liquid to form bubbles inside the bulk of the liquid.

The heat of vaporization is the amount of heat required to convert or vapor-
ize a saturated liquid (i.e., a liquid at its boiling point) into a vapor. Liquids may 
change to vapor at room temperatures below their boiling points through the pro-
cess of evaporation. 

Let the molecules impinging on the surface exert a partial pressure called vapor 
pressure ( ). And let this pressure of the liquid vapor combined with the pressure of 
other gases in the atmosphere make up the total atmospheric pressure ( ).

If  <  , then

Number of molecules leaving the surface number of molecules re-entering 
the surface

That is, evaporation is taking place.

If    > , then

Number of molecules leaving the surface < number of molecules re-entering 
the surface

That is, condensation is taking place.

Diethyl ether
Methyl acetate
Fluorobenzene
2-Heptene

Temperature, °C

–30
0.1

1.0
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–20 –10 0 10 20 30 40 50 60 70 80

Propane
Methyl chloride
Butane
neo-Pentane

Code:

V
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tm
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Fig. 1.30 Vapor pressure chart
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If pv  = pa , then

Number of molecules leaving the surface = number of molecules re-entering 
the surface

That is, boiling takes place, and for this equilibrium condition,  is called 
the saturation vapor pressure (SVP).

Thus, when the vapor pressure is equal to the atmospheric pressure or ambient 
pressure (in a closed vessel), boiling takes place. This pressure is a function of tem-
perature. As the temperature increases, the vapor pressure also increases until the 
boiling point is reached for the ambient pressure. At sea level, water boils at 100°C 
and at high altitude (mountain peaks), where the atmospheric pressure is less, water 
boils at a temperature less than 100°C. When a liquid is con  ned in an enclosed 
vessel it may boil even at room temperature, if the ambient pressure is decreased to 
the magnitude of the vapor pressure of the liquid at that temperature.

Example 1.31 At what pressure in millibars will 40°C water boil?

Solution Vapor pressure at 40°C is 7.38 kN/m2.
Hence, water will boil at 7.38 kN/m2 = 7380 N/m2 = 73.8 mbar ( )
(since 1 mbar = 100 N/m2)

1.7.3 Cavitation

The SVP is of great practical use in  uid problems. If the pressure at any point in 
a  uid phenomenon approaches the vapor pressure, the liquid starts vaporizing. 
Vapor bubbles that are created in the region of low pressure are carried with the 
liquid to the region of high pressure. These bubbles collapse in the region of high 
pressure and explosion of bubbles takes place. This explosion causes damage to 
the walls of the conduit and also creates air pockets in the  ow. The phenomenon 
is known as cavitation. Because of the destructive nature of cavitation, its occur-
rence in  ow problems should be avoided. This is possible if the pressure at any 
point in the  uid phenomenon is not permitted to fall below the SVP. To avoid 
cavitations (cavity formation) in problems related to  ow of water, the pressure is 
not permitted to fall below 2.5 m of water.
Example 1.32 At what pressure can cavitation be expected at the inlet of a pump 
that is handling water at 20°C?
Solution Cavitation occurs when the internal pressure drops to the vapor pres-
sure. Vapor pressure of water at 20°C is 2.34 kN/m2 and hence cavitation can be 
expected at that pressure.

1.8 BULK MODULUS (K) AND COMPRESSIBILITY ( )

We will  rst de  ne bulk modulus of elasticity.

1.8.1 Bulk Modulus

Elasticity of  uids is measured in terms of bulk modulus of elasticity ( ), which 
may be de  ned as the ratio of compressive stress to volumetric strain. This bulk 
modulus is analogous to the modulus of elasticity for solids. However, for  uids, 
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38 Fluid Mechanics and Machinery

it is de  ned on a volume basis rather than in terms of familiar one-dimensional 
stress–strain relation for solid bodies.

Consider a cylinder  tted with piston as shown in Fig. 1.31.
Let ∀ = volume of gas enclosed in the cylinder,  = pressure of gas when 

volume is ∀, which is also equal to / , where,  is the area of cross section of 
the cylinder.

Let the pressure be increased to  + , then the volume of gas decreases from 
∀ to ∀    −    ∀.
Therefore, Increase in pressure = 

Decrease in volume = d∀

Volumetric strain = − ∀
∀

d

Negative sign indicates decrease in volume with increase in pressure.
Therefore, bulk modulus  is given by

 K
dp
d

�

�
∀

∀

 (1.29)

Steepening of the curve with increasing pressure shows that as  uids are com-
pressed, it becomes increasingly dif  cult to compress further. In other words, the 
value of  increases with increase in pressure. The bulk modulus of elasticity  
is not constant, but it increases with increase in pressure and further it decreases 
with increase in temperature.
At NTP (normal temperature and pressure),

 
K Kwater

2
air

2kN/m and kN/m� � �2 07 10 101 36. .

This indicates that air is about 20,000 times more compressible than water.With 
a decrease in the volume of a given mass,  = r∀, will result in an increase in 
density. Equation (1.29) can also be expressed as

                                                       
K

dp

d
�

r r/                                                    
(1.30)

Stress 

Piston 

Cylinder 

dv 

p

v

Volumetric strain 

dv/v 

dp

Fig. 1.31 Piston and cylinder experiment
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When gases are compressed or expanded, the relationship between pressure and 
density depends on the nature of the process. If the compression or expansion 
takes place under constant temperature conditions (isothermal process), then

                                                     

p
r � constant

                                                 

(1.31)

If the compression or expansion is frictionless and no heat is exchanged with the 
surroundings (isentropic process), then

                                                    

p
kr

= constant
                                                 

(1.32)

where  is the ratio of the speci  c heat at constant pressure  to the speci  c heat 
at constant volume  (that is,  = / ). The two speci  c heats are related to the 
gas constant  through the equation  =  − . Here  is the absolute pressure and 
the value of  for air =1.4.

1.8.2 Compressibility

Compressibility is nothing but reciprocal of modulus of elasticity . That is,

                                                            
b�

1

K
                                                     (1.33)

The property by which  uids undergo a change in volume under the action of 
external pressure is known as compressibility. It decreases with an increase in 
pressure of  uid, as the volume modulus increases with the increase of pressure. 
The variation in the volume of water with the variation of pressure is so small 
that for all practical purposes it is neglected. Thus, the water is considered to be 
an incompressible liquid. However, in case of water  owing through pipes, when 
sudden or large change in pressure (e.g., water hammer) takes place, then the com-
pressibility must be taken into account.

1.8.3 Speed of Sound

Another important consequence of the compressibility of  uids is that disturbances 
introduced at some point in the  uid propagate at a  nite velocity. In certain situation, 
these small disturbances can propagate at a rate equal to the speed of sound . The 
speed of sound is related to changes in pressure and density of the  uid medium 
through Eqn (1.34).

                                                        

c
dp

d
�

r
 

(1.34)

or in terms of bulk modulus   c
K

�
r

 (1.35)

Since the disturbance is small, one can assume the process to be isentropic. For 
gases under isentropic process,
 K kp�
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Therefore c
kp

�
r

(1.36)

or c kRT� (1.37)
Thus, for ideal gases the speed of sound is proportional to the square root of the 
absolute temperature.

Example 1.33 A liquid compressed in a cylinder has a volume of 1000 cm3 at 
1 MN/m2 and a volume of 995 cm3 at 2 MN/m3. What is the bulk modulus of 
elasticity?

Solution We have  K
p

Ans�� ��
�

�
�

D

D∀
∀

2 1

995 1000 1000
200

( ) /
MPa ( )

Example 1.34 For  = 2.2 GPa for the bulk modulus of elasticity for water, what 
pressure is required in reducing its volume by 0.5%?

Solution K
p p

�� ��
�

�

D

D∀ ∀/
, .

.
2 2

0

0 005
2

p Ans2 0 0110 11 0� �. .GPa MPa ( )

Example 1.35 When the pressure of liquid is increased from 3 MN/m2 to 
6.0 MN/m2, its volume is decreased by 0.1%. What is the bulk modulus of elasti-
city of the liquid?

Solution Given: Initial pressure = 3.0 MN/m2

Final pressure = 6.0 MN/m2

Increase in pressure = 6 − 3 = 3 MN/m2

Decrease in volume = 0.1%
Therefore,

K
dp

d
Ans=

− ∀ ∀
= =

/

.

.
. ( )

3 0
0 1

100

3 0 109 2� N/m

Example 1.36 A high pressure steel container is  lled with liquid at a pressure 
of 10 atm. The volume of the liquid is 1.23200 l. At a pressure of 25 atm, the 
volume of the liquid equals 1.23100 l. What is the average bulk modulus of the 
elasticity of the liquid over the given range of pressure, if the temperature after 
compression is allowed to return to the original temperature? What is the coef-
 cient of  compressibility?

Solution K
dp

d
=

− ∀ ∀
= − −

−
=

/

( ) .

( . . ) / .

25 10 101 3

1 23100 1 23200 1 23200
1872 2MN/m (( )Ans

b = = =1 1

1872
0 000534 2

K
Ans. / ( )m MN
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1.9 CAPILLARITY OR MENISCUS EFFECT
Capillarity is a phenomenon by which a liquid (depending upon its speci  c grav-
ity) rises into a thin glass tube or below its general level, because of the combined 
effect of cohesion and adhesion. (Adhesion means an attraction between the mol-
ecules of a liquid and the molecules of a solid boundary in contact with the liquid. 
This property enables a liquid to stick to another body.)

Figure 1.32 shows the phenomenon of rising water in the tube of a smaller 
diameter.

Let  = diameter of the capillary tube,  = angle of contact of the water surface, 
 = height of capillary rise,  = surface tension force/unit length, and � = weight den-

sity (r ). For a length of p , surface tension force = p .
Equating the vertical component of surface tension force and weight of water, 

we get s p u
p

g( cos )� � � � � �d d h
4

2                    

or h
d

= 4s u

g

cos

 

(1.38)

For water and glass combination,  = 0. Therefore,

 h
d

�
4s

g   

(1.39)

The smaller the diameter of the capillary tube, the greater is the capillary 
rise or depression. At the same time, it should not be smaller than 8 mm and fur-
ther it should not be more than 12 mm. Also, the capillary rise is usually measured 
to the bottom of the meniscus.

σ 

h = capillary rise

σ 

Capillary tube  

General water level  

d 

θ θ 

Weight of water 

Fig. 1.32 Effect of capillarity in case of water
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42 Fluid Mechanics and Machinery

In case of mercury, there is a capillary depression as shown in Fig. 1.33.

 1. For wetting liquid (water)  < p/2; for pure water  = 0 (pure water in con-
tact with clean glass); otherwise,  = 25° (slightly contaminated water)

 2. For non-wetting liquid (mercury)  > p/2; for mercury  varies between 
130° and 150°

Example 1.37 Two parallel wide, clean, glass plates separated by a distance  of 
1 mm are placed in water, as shown in Fig. 1.34. How far does the water rise due to the 
capillary action away from the ends of the plate? Take surface tension = 0.0730 N/m.

Mercury

General mercury level

Capillary tube

h

ds s

u

Fig. 1.33 Effect of capillarity in case of mercury

h

d

h

Fig. 1.34

h
Weight

patm

patm

∆

σσ

Fig. 1.35

Solution Because the plates are clean, the angle 
of contact between water and glass is taken as zero, 
considering the free body diagram of unit width of 
the raised water, away from the ends.

Summing forces in the vertical directions 
gives

2
1

1000

1

1000
0

2

� � � � �s
⎛
⎝⎜

⎞
⎠⎟

=h g

or  = 0.0143 m or 14.3 mm
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Example 1.38 Calculate the capillary effect in millimeters in a glass tube of 
3 mm in diameter, when immersed in water and mercury. The temperature of the 
liquid is 20°C and the values of surface tension of water and mercury at 20°C in 
contact with air are 0.0735 N/m and 0.51 N/m, respectively. The contact angle 
for water  = 0° and for mercury  = 130°. Take speci  c weight of water at 20°C 
as equal to 9810 N/m3.

Solution We have capillary effect for water,

h Ans�
� �

�
�

4 0 0735 0

9810 0 003
9 98

. cos( )

.
. mm ( )

Capillary effect for mercury,

 
h Ans�

� �

�
��

4 0 051 130

9810 0 003
4 45

. cos

.
. mm ( )

Example 1.39 A U-tube is made up of two capillaries of bores 1.0 mm and 
2.2 mm, respectively. The tube is held vertically with zero contact angles. It is 
partially  lled with liquid of surface tension 0.06 N/m. If the estimated difference 
in the level of two menisci is 15 mm, determine the mass density of the liquid.

Solution Given bores of capillaries: 1 = 1.0 mm = 0.001 m
2 = 2.2 mm = 0.0022 m

Difference of level, 1 − 2 =15 mm = 0.015 m

So, we have h
d

h
d

h h
d d

1
1

2
2

1 2
1 2

4 4

4 1 1

0 015
4 0

�

� � �

�

s s

s

cos cos

.

u

g

u

g

g

and =

⎡

⎣
⎢

⎤

⎦
⎥

× ..

. . .

.

06

9 81

1

0 001

1

0 0022

889 63 3

r

r

×
⎡
⎣⎢

⎤
⎦⎥

�

� kg/m ( )Ans

Example 1.40 Develop a formula for the capillary rise of a  uid having surface 
tension  and a contact angle  between

 1. two concentric glass tubes of 
radii  and  (Fig. 1.36)

 2. two vertical glass plates set par-
allel to each other and having a 
gap  between them (Fig. 1.37)

Solution

1. At equilibrium,

g p s u ph r r r ro i o i( ) cos ( )2 2 2− � � � �

Now,

or

So,

Fig. 1.36

Concentric 
glass tubes 

h

ro

ri
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or h
r r

Ans
o i

�
2s u

g

cos

( )−
( )

2. We have g s u

s u

g

hbt b

h
t

Ans

� �

�

cos

cos
( )

2

2

Example 1.41 The glass tube in Fig. 1. 38 
is used to measure pressure  in the water 
tank. The diameter of the tube is 0.9 mm 
and water is at 30°C. After correcting for 
the surface tension, what is the true water 
height in the tube? What percentage of error 
is made at equilibrium, if no correction is 
computed?

Solution Height of water in the glass 
tube (capillary correction) is given by

h
gr

� �
� �

� �
�

2 2 0 0712

1000 9 81 0 45
0 0322 3 22

s u

r

ucos . cos

. .
. .m or cm

Therefore, true height of water in the tube = 15 − 3.22 = 11.78 cm ( )
Neglecting capillary correction causes

 

3 22

15
0 2146 21 46

.
. . %� or error ( )Ans

 

1.10 SURFACE  TENSION ( s)
Many natural phenomena are associated with surface tension. Some of them are 
listed below:

θθ

ht

σσ

b

Fig. 1.37

150 mm p 

Fig. 1.38 Water tank

or
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Consider a free surface as shown in Fig. 1.39. All molecules inside the medium 
are attracted equally in all directions by the surrounding molecules, but the one on the 
surface does not have a molecule above to pull it upwards, and it is therefore attracted 
inwards. This results in an inward attraction on particles in and near the surface and 
tends to make the surface area as small as 
possible. Consequently, the surface  lm is 
under a tension equal to its length.

The tensile strength of the surface  lm 
computed per unit length is termed as 

. Since the magnitude is small 
compared to gravitational forces and pres-
sure, the surface tension is usually neglected, 
but becomes quite signi  cant when there 
is a free surface and the boundary condi-
tions are small as in the case of small-scale 
models of hydraulic engineering structures. 
The surface tension is expressed in N/m. 
The values of surface tension (Table 1.19) 
depend on the following factors:

1. Nature of liquid
2. Nature of surrounding matter (e.g.,

solid, liquid, or gas)
3. Kinetic energy (and hence, the tem-

perature of the liquid molecules)

1. A small quantity of liquid assuming the shape of globules and becoming
spherical when made smaller

2. Rain drop falling over lotus leaves
3. Mercury spilling over the  oor
4. Walking of some insects over water
5. Floating of a carefully placed needle on a water surface

These observations tell us that liquids behave as if their surfaces were stretched 
like membranes under tension. Actually, there is no membrane, but a membrane-
like situation is obtained by the property of cohesion (cohesion means intermo-
lecular attraction between molecules of same liquid).

Liquid

Molecule

Molecule
Free surface

Fig. 1.39 Surface tension

Table 1.19 Variation of surface ten-
sion with respect to temperature

Temperature 
(ºC)

s (N/m) 
(water–air)

0 0.0756

10 0.0742

20 0.0728

3 0.0712

40 0.0696

50 0.0679

60 0.0662

70 0.0644

80 0.0626

90 0.0608

100 0.0589
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As the water temperature range of the data is considerable, one requires rela-
tionships for s as functions of temperature . Streeter and Wylie (1979) have 
given the variation of s for water with  ranging from 0°C to 100°C in a tabular 
form. Using these data, the following best-  t equations were obtained in SI units.
The maximum percentage error in the use of Eqn (1.40) is 1.0%, which occurs in 
a very narrow band of temperature.

                                         s � 0 0762 0 00233. exp( . )− T  (1.40)

1.10.1 Pressure Inside a Water Droplet

To obtain pressure inside a water droplet, use of surface tension is needed, which 
is explained further.

Let  be the pressure inside the droplet 
above the outside pressure where  is the 
diameter of the droplet and s is the surface 
tension of the liquid (Fig. 1.40). From the 
free body diagram, we have

Pressure force = p d�
p

4
2

Surface tension force acting around the cir-
cumference = s p× d

Under the equilibrium conditions, these 
two forces will be equal and opposite, i.e.,

p d d× = × ×
p

s p
4

2

Therefore, p
d

= 4s  (1.41)

From Eqn (1.41), it is seen that pressure intensity decreases with the increase in 
the diameter of the droplet.
1. Pressure inside a soap bubble (Fig. 1.41)

Soap bubbles have two surfaces on which 
surface tension  acts.

From the free body diagram, we have

 
p d d× = × × ×

p
s p

4
22

or 
p

d
�

8s

 (1.42)

Since the soap solution has a high value of surface tension , even with small 
pressure of blowing a soap bubble will tend to grow larger in diameter (hence, 
formation of large soap bubbles).

2. A liquid jet
Let us consider a cylindrical liquid jet of diameter  and length , as shown in 
Fig. 1.42.

Water Pressure 

p

Surface tension 

s

Fig. 1.40  Free body diagram of 
water droplet

pd

s

s

Fig. 1.41  Free body diagram of 
soap bubble
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Pressure force = p l d� �

Surface tension force = s � �2 l
Equating the two forces, we have

                               
p

d
�

2s

  
(1.43)

Example 1.42 A soap bubble 60.0 mm in diam-
eter has an internal pressure in excess of the out-
side pressure of 25 N/m2. What is the tension in 
the soap  lm?

Solution Given, diameter of the soap bubble = 60 × 10−3 m and  = 25 N/m2

We have p
d

Ans

�

�
�

�

�

8

25
8

60 0 10
0 1875

3

s

s

s

.
. ( )

−

N/m

Example 1.43 To form a stream of bubbles, air is introduced through a nozzle 
into a tank of water (at 20°C). If the process requires 2.0 mm diameter bubbles to 
be formed, by how much should the air pressure at the nozzle must exceed that of 
the surrounding water. Take surface tension at 20°C = 0.0735 N/m.

Solution Given, diameter of the bubbles to form = 2.0 mm =2 × 10−3 m
 Surface tension = 0.0735 N/m

We have p
d

p Ans

�

�
�

�

�

�

4

4 0 0735

2 10
147

3

2

s

.

( )N/m

Example 1.44 What force is necessary 
to lift a thin platinum wire ring of 4.0 cm in 
diameter from a water surface? Assume the 
surface tension of water as 0.0728 N/m and 
neglect the weight of the wire (Fig. 1.43).
Solution Given, diameter of the wire 
= 4.0  cm = 0.04  m
Surface tension = 0.0728 N/m
Assuming << ,

 

F D

F Ans

� � � � �

�

2 2 0 04 0 0728

0 01829

( ) . .

.

p s p

N ( )

Example 1.45 A spherical water droplet of 1.2 mm in diameter splits up in air 
into 60 smaller droplets of equal size. Find the work required in splitting up the 
droplet. The surface tension coef  cient of water in air is 0.073 N/m.

Semijet 

Forces on 
the liquid jet 

l

d

Fig. 1.42  Free body diagram
of a liquid jet

So,

or

or

1-87 

F

d Water 
surface 

Water 
surface 

D

d

Fig. 1.43

OUP_Ch01.indd   47 9/14/2010   11:21:35 AM

© Oxford University Press



48 Fluid Mechanics and Machinery

Solution
An increase in the surface area out of a given mass takes place when a 

bigger droplet splits up into a number of smaller ones. So, the work required is 
given by the product of surface tension coef  cient and the increase in surface 
area.

Let,  be the diameter of the smaller droplets.

From conservation of mass, 60
6

0 0012

6
0 31 10

3 3
3� � �

�
� � �p

pd
d

.
, . m

Initial surface area (due to single droplet) � � � � �p ( . ) .0 012 4 523 102 6 2m

Final surface area (due to 60 smaller droplets) � � � � �60 0 31 10 0 05843 2p ( . ) .− m

Hence, the increase in surface area � � � ��0 0584 4 523 10 0 05846 2. . . m

The required work = 0.073 × 0.584 = 4.26 × 10−3 J ( )

Example 1.46 Calculate the work done in blowing a soap bubble of diameter 
15 cm. Assume the surface tension of soap solution = 0.04 N/m.

Solution We know that the soap has two interfaces.
So,
Work done = surface tension × total surface area

 
� � � � � � � �0 04 4

15

2
10 2 5 65 102

2

3. .p − −⎛
⎝⎜

⎞
⎠⎟

Nm ( )Ans

Example 1.47 If the surface tension at air-water interface is 0.073 N/m, what is 
the pressure difference between the inside and outside of an air bubble of diameter 
0.02 mm?

Solution An air bubble has only one surface. Therefore,

 
D

s
p

d
Ans� �

�

�
�

4 4 0 073

0 02 10
14 6

3

.

.
. ( )

−
kPa

SUMMARY

 • Fluid mechanics is a branch of mechanics that deals with the static, kine-
matic, and dynamic aspects of  uids. Fluids are at rest when there is no 
external unbalanced force and this aspect of the study of  uids is called  uid 
statics. Kinematics refers to the study of  uids in motion where pressure 
forces are not considered, and if the pressure forces are also considered for 
the  uid in motion, it is called  uid dynamics.

 • The mass density or speci  c mass of a liquid is equal to mass per unit volume, 

i.e., r �
m

V
.

 • The weight density or speci  c weight of a  uid is equal to weight per unit 

volume, i.e., g r� �
W

V
g.
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• Speci  c volume is a reciprocal of mass density, i.e., Vs �
1

r
.

• Speci  c gravity is de  ned as the ratio of the speci  c weight of the liquid to the

speci  c weight of a standard liquid, i.e., S �
g

g
liquid

water

.

• Relative density is a dimensionless ratio of the densities of two material, i.e.,

G �
r

r
obj

reference
.

• Gases are highly compressible in comparison to liquids, with changes in gas
density directly related to changes in pressure and temperature through the
equation p RT� r .  This equation is known as ideal or perfect gas law.

• The shear stress is proportional to the velocity gradient, i.e., τ � m
du

dy
.

• Kinematic viscosity is given by n m

r
� .

• Poise and stokes are the units of dynamic viscosity and kinematic viscosity,
respectively, in CGS units.

• Bulk density of elasticity is given by K
dp

d
=

⎛
⎝⎜

⎞
⎠⎟

–

∀
∀

.

• Compressibility is the reciprocal of bulk modulus of elasticity, i.e., b�
1

K
.

• A liquid forms an interface with a second liquid or gas. The surface energy
per unit area of interface is known as surface tension or coef  cient of surface
tension.

 (a) Surface tension is expressed in N/m.

 (b) For liquid drop, p
d

�
4s .

 (c) For soap bubble, p
d

�
8s .

 (d) For liquid jet, p
d

�
2s .

• Liquids have both cohesion and adhesion, which are forms of molecu-
lar attraction. The rise or fall of liquid in small diameter tubes is due to
 capillarity. Li quids such as water, which wet a surface, cause capillary rise.
In non-wetting liquids (e.g., mercury), capillary depression is caused.

• Capillary rise or fall of a liquid is given by h
d

�
4s

g

cosu .

• The value of  for water is considered equal to zero and for mercury equal to 128°.
• All liquids exposed to a gaseous environment have a tendency to evaporate.

Evaporation is a process in which the liquid loses its molecules to the gas sur-
rounding it. The rate of evaporation depends on the difference in molecular
energy levels between the liquid and the gas. The pressure at which the liquid
begins to boil is called vapor pressure of the liquid at that temperature.
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 Multiple Choice Questions

 1. The mass per unit volume of a liquid at a standard temperature and pressure 
is called

  (a) speci  c weight (b) mass density
  (c) speci  c gravity (d) none of the above
 2. The weight per unit volume of a liquid at a standard temperature and pres-

sure is called
  (a) mass density (b) speci  c gravity
  (c) speci  c weight (d) none of the above
 3. Which of the following is the speci  c weight of water in SI units?
  (a) 9.81 kN/m3 (b) 9.81 × 106 kN/m3

  (c) 9.81 N/m2 (d) none of the above
 4. The speci  c gravity of water is taken as
  (a) 0.001 (b) 0.01
  (c) 0.1 (d) 1
 5. The speci  c gravity of sea water is _______that of pure water.
  (a) Same as  (b) Less than
 (c) More than
 6. The density of liquid in gm/cm3 is numerically equal to its speci  c gravity.
  (a) True (b) False
 7. When a shear stress is applied to a substance it is found to resist it by static 

deformation. The substance is a 
  (a) liquid (b) solid
  (c) gas (d)  uid
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8. The condition of no-slip at rigid boundaries is applicable to
(a)  ow of Newtonian  uid (b)  ow of ideal  uids only
(c)  ow of all real  uids (d)  ow of all non-Newtonian  uids

9. The variation in the volume of a liquid with the variation of pressure is
called its
(a) surface tension (b) compressibility
(c) capillarity (d) viscosity

10. When a tube of smaller diameter is dipped in water, the water rises in the
tube with an upward ______ surface.
(a) Concave (b) Convex

11. Newton’s law of viscosity relates to which of the following?
(a) Pressure, velocity, and viscosity
(b) Shear stress and rate of angular deformation in a  uid
(c) Shear stress, temperature, viscosity, and velocity
(d) None of the above

12. With an increase in size of tube, the rise or depression of liquid in the tube
due to surface tension will
(a) decrease
(b) increase
(c) remain unchanged
(d)  depend upon the characteristics of liquid

13. In the manufacture of lead shots, the property of surface tension is utilized.
(a) Agree (b) Disagree

14. Newton’s law of viscosity states that
(a) shear stress is directly proportional to the velocity
(b) shear stress is directly proportional to the velocity gradient
(c) shear stress is directly proportional to shear strain
(d) shear stress is directly proportional to the viscosity

15. Kinematic viscosity is de  ned as equal to
(a) dynamic viscosity/density (b) dynamic viscosity × density
(c) dynamic viscosity × pressure (d) pressure × density

16. Poise is the unit of
(a) mass density (b) kinematic viscosity
(c) viscosity (d) velocity gradient

17. Stoke is the unit of
(a) surface tension (b) viscosity
(c) kinematic viscosity (d) none of the above

18. Surface tension is the unit of
(a) force per unit area (b) force per unit length
(c) force per unit volume (d) none of the above

19. The viscosity of
(a) liquids increases with temperature
(b) gases increases with temperature

OUP_Ch01.indd   51 9/14/2010   11:21:37 AM

© Oxford University Press



52 Fluid Mechanics and Machinery

  (c)  uids decreases with temperature
  (d)  uids increases with temperature

20. The gases are considered incompressible when Mach number
(a) is equal to 1.0 (b) is equal to 0.5
(c) is more than 0.3 (d) is less than 0.2

21. Which of the following property do practical  uids possess?
(a) Viscosity (b) Surface tension
(c) Compressibility (d) All of the above

22. To which of the following does water belong to?
(a) Newtonian  uids (b) Non-Newtonian  uids
(c) Compressible  uids (d) None of the above

23. A  uid is a substance that
(a) always expands until it  lls any container
(b) is practically incompressible
(c) cannot withstand any shear force
(d) obeys the newton’s law of viscosity

24. The property of  uids by which their molecules get attracted to another
body is known as
(a) capillary action (b) surface tension
(c) adhesion (d) cohesion

25. The bulk modulus of elasticity
(a) is independent of temperature
(b) increases with the pressure
(c) has the dimensions of 1/P
(d) is larger when the  uid is more compressible

26. Falling drops of water become spheres due to
(a) adhesion (b) cohesion
(c) surface tension (d) viscosity

27. The gases are considered incompressible when Mach number
(a) is equal to 1.0 (b) is equal to 0.5
(c) is more than 0.3 (d) is less than 0.2

28. An ideal  uid is de  ned as the  uid which
(a) is incompressible
(b) is compressible
(c) has negligible surface tension
(d) is incompressible and non-viscous (inviscid)

29. A 40 cm cubical block slides on oil (viscosity = 0.8 Pas), over a large plane
horizontal surface. If the oil  lm between the block and the surface has a uni-
form thickness of 0.4 mm, what will be the force required to drag the block
at 4 m/s? Ignore the end effects and treat the  ow as two dimensional.
(a) 1280 N  (b) 1640 N
(c) 1920 N  (d) 2560 N
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 Review Questions

 1. De  ne speci  c weight, mass density, speci  c volume, and speci  c gravity.
 2. What are the different properties of liquid?
 3. De  ne a  uid. What is the difference between an ideal  uid and a real  uid?
 4. What is the difference between a  uid and a solid? Differentiate between 

compressible  uids and incompressible  uids.
 5. De  ne Newtonian and non-Newtonian  uids.
 6. Why is the speci  c weight of sea water more than that of pure water? Give 

their numerical values.
 7. De  ne the terms cohesion and adhesion.
 8. What kind of rheological materials are paint and grease?
 9. Distinguish between Newtonian and non-Newtonian  uids.
 10. What is vapor pressure? What is its signi  cance in  ow problems? What do 

you understand by the term cavitation?
 11. Why do the different liquids exert different vapor pressures?
 12. Write a short note on surface tension.
 13. De  ne surface tension. Derive expressions for the pressure (a) within a 

droplet of water and (b) inside a soap bubble.
 14. De  ne the term viscosity and give the units in which it is expressed.
 15. On what factors does the viscosity depend?
 16. What is the difference between dynamic viscosity and kinematic viscosity? 

State their units of measurements.
 17. State the Newton’s law of viscosity and give examples of its application.
 18. How does viscosity of a  uid vary with temperature?
 19. Explain the phenomenon of capillarity. Obtain an expression for capillary 

rise of a liquid.
 20. De  ne compressibility. How is it related to bulk modulus of elasticity?
 21. Mention some examples where compressibility of water is taken into 

account.

 Problems

 1. If the speci  c weight of a liquid is 8 kN/m3, what is its mass density? 
 (Ans: 815 kg/m3)
 2. If speci  c gravity of a liquid is 0.8, make calculations for its mass density, 

speci  c volume, and speci  c weight. 
 (Ans: 800 kg/m3, 1.25 × 10−3 m3/kg, 7848 N/m3)
 3. Calculate the speci  c weight, speci  c mass, and speci  c gravity of a liquid 

having a volume as 4 m3 and weighing 30 kN. 
 (Ans: 7500 N/m3, 764.53 kg/m3, 0.76)
 4. One liter of petrol weighs 7.02 N. Calculate the speci  c weight, density, 

speci  c volume, and relative density. 
 (Ans: 7.02 kN/m3, 716 kg/m3, 1.395 × 10−3 m3/kg, 0.716)
 5. Air is kept at a pressure of 200 kPa and a temperature of 30°C in a 500 L 

container. What is the mass of the air?         (Ans: 1.15 kg)
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 6. Calculate the gas constant and density of certain gas weighing 14.7 N/m3 at 
30°C and at an absolute pressure of 196.2 kN/m2.    (Ans: 430 J/kgK)

 7. Carbon tetrachloride at 20°C has a viscosity of 0.000967 Ns/m2. What 
shear stress is required to deform this  uid at a strain rate of 5000 s−1?

  (Ans: 4.84 Pa)
 8. A plate 0.5 mm distant from a  xed plate moves at 0.25 m/s and requires a 

force per unit area of 2.0 Pa to maintain this speed. Determine the viscosity 
of the  uid between the plates. (Ans: 0.00400 Ns/m2)

 9. Two horizontal  at plates are placed 0.15 mm apart and the space between 
them is  lled with an oil of viscosity 1 poise. The upper plate of area 1.5 m2 
is required to move with a speed of 0.5 m/s relative to the lower plate. Deter-
mine the necessary force and power required to maintain this speed.

  (Ans: 500 N, 0.25 kW)

 10. The velocity distribution over a plate is given by, u y y�
3

4
2– , where  is 

  the velocity in meters per second at a distance  meter above the plate. 
Determine the shear stress at  = 0 and  = 0.2 m. Take m �8 4. poise .

  (Ans: 0.63 N/m2, 0.294 N/m2)
 11. The speci  c gravity of water at 20°C is 0.998 and its viscosity is 0.001008 

Ns/m2. Find its kinematic viscosity.  (Ans: 1.009 × 10–6 m2/s)
 12. A piston of 69 mm diameter rotates concentrically inside a cylinder 

70 mm diameter. Both the piston and the cylinder are 80 mm long. Find the 
tangential velocity of the piston if the space between the cylinder and the 
piston is  lled with oil of viscosity 0.235 Ns/m2 and the torque of 0.0143 N m 
is applied. (Ans: 4.87 m/s)

 13. An increase in pressure of a liquid from 7.5 MPa to 15 MPa- results into 
0.2% decrease in its volume. Determine the bulk modulus of elasticity and 
coef  cient of compressibility of a liquid. 

 (Ans: 3.75 × 109 N/m2, 0.267 × 10−9 m2/N)
 14. A 20 mm wide gap between two vertical plane surfaces is  lled with an 

oil of speci  c gravity 0.85 and dynamic viscosity 2.5 Ns/m2. A metal plate 
1.25 m × 1.25 m × 0.2 cm thick and weighing 30 N is placed mid-way in 
the gap. Find the force if the plate is to be lifted up with a constant velocity 
of 0.12 m/s.  (Ans: 108.11 N)

 15. A square plate of size 1 m × 1 m and weighing 392.4 N slides sown an 
inclined plane with a uniform velocity of 0.2 m/s as shown in Fig. 1.44. The 
inclined plane is laid on a slope of 5 vertical to 12 horizontal and has an oil 
 lm of 1 mm thickness. Calculate the dynamic viscosity of oil. 

 (Ans: 0.755 N s/m2)

 

5
12

u = 0.2 m/s 

Fig. 1.44 
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16. A liquid has a viscosity of 0.005 N s/m2 and density of 850 kg/m3. Calcu-
late the kinematic viscosity. (Ans: 5.882 × 10−6 m2/s)

17. Calculate the work done in blowing a soap bubble of diameter 12 cm.
Assume the surface tension of soap solution = 0.04 N/m.

(Ans: 36.2 × 10−4 N m)
18. Neglecting the weight of the wire, what force is required to lift a thin wire

ring 40 mm in diameter from a water surface at 20°C? (Ans: 0.0183 N)
19. What is the pressure within a 1 mm diameter spherical droplet of water

relative to the atmospheric pressure outside? Assume  for pure water to be 
0.073 N/m. (Ans: 292 N/m2)

20. A capillary tube having an inside diameter 5 mm is dipped in water at 20°C.
Determine the height of water which will rise in the tube. Take  = 0.075 N/m 
and  = 60°. (Ans: 5.2 mm)

21. Find the capillary rise in a 3 mm glass tube when immersed vertically in
water. Assume  = 0.071 N/m. (Ans: 9.69 mm)

22. Distilled water at 10°C stands in a glass tube of 8 mm diameter at a height
of 25 mm. What is the true static height? (Ans: 21.2 mm)

23. At 30°C what diameter glass tube is necessary to keep the capillary height
change of water less than 1mm? (Ans: 29.2 mm)

24. Derive an expression for pressure difference across a spherical drop-
let. Using the result,  nd the surface tension in a soap bubble of 50 mm 
diameter when the inside pressure is 1.96 N/m2 above the atmosphere. 

(Ans: 0.0125 N/m)

Answers to Multiple Choice Questions

1. (b), 2. (c), 3. (a), 4. (d), 5. (c), 6. (a), 7. (b), 8. (c), 9. (b), 10. (a), 11. (b), 12. (a),
13. (a), 14. (b), 15. (a), 16. (c), 17. (c), 18. (b), 19. (b), 20. (d), 21. (d), 22. (a), 23. (c),
24. (c), 25. (c), 26. (c), 27. (d), 28. (d), 29. (a)

OUP_Ch01.indd   55 9/14/2010   11:21:38 AM

© Oxford University Press




