Fluid Mechanics and Machinery

C.S.P. Ojha

Professor Civil Engineering Department Indian Institute of Technology Roorkee

R. Berndtsson

Professor in Water Resources Engineering Lund University, Sweden

P.N. Chandramouli

Professor Civil Engineering Department The National Institute of Engineering, Mysore

Contents

Prefac	e	iii		
I.Fu	ndamentals of Fluid Mechanics	I		
1.1	Introduction	1		
1.2	Concept of a Fluid			
1.3	Engineering System of Units	4		
1.4	Properties of Fluid	4		
1.5	Fluid as a Continuum	13		
1.6	Viscosity	15		
	1.6.1 No-Slip Condition of Viscous Fluids	19		
1.7	Vapor Pressure of Liquids (P_{y}) and Cavitations	34		
	1.7.1 Vapor Pressure	34		
	1.7.2 Boiling Point	35		
	1.7.3 Cavitation	37		
1.8	Bulk Modulus (<i>K</i>) and Compressibility (β)	37		
	1.8.1 Bulk Modulus	37		
	1.8.2 Compressibility	39		
	1.8.3 Speed of Sound	39		
1.9	Capillarity or Meniscus Effect	41		
1.10	Surface Tension (σ_s)	44		
	1.10.1 Pressure Inside a Water Droplet	46		
2. Flu	id Pressure and its Measurements	56		
2.1	Introduction	56		
2.2	Pressure at a point	56		
	2.2.1 Forces on a Fluid Element	57		
	2.2.2 Definition of Stress	57		
	2.2.3 Stress at a Point	58		
2.3	Absolute, Gauge, Atmospheric, and Vacuum			
	Pressures	61		
2.4	Pascal's Law	62		
2.5	Pressure Variation in a Static Fluid	63		
2.6	Pressure Equivalents and Units	66		
2.7	Measurement of Atmospheric Pressure:			
	Barometer	70		
2.8	Measurement of Gauge Pressure at a Point:			
	Piezometer	72		

2.9	Manometer	74
	2.9.1 U-tube Manometer	74
	2.9.2 Multitude Manometer	77
	2.9.3 Differential Manometer	78
	2.9.4 Single-Column Manometer	82
	2.9.5 Inclined Single-Column Manometer	84
	2.9.6 Micromanometer	85
2.10	Hydraulic Jack	86
2.11	Mechanical Gauge	87
	2.11.1 Bourdon Gauge	87
	2.11.2 Diaphragm Pressure Gauge	87
	2.11.3 Deadweight Pressure Gauge	87
3. Hy	drostatic Forces on Surfaces	94
3.1	Introduction	94
	3.1.1 Horizontal Plane Surface	94
	3.1.2 Vertical Plane Surface	95
	3.1.3 Center of Pressure	95
3.2	Vertical Plane Surface of Arbitrary Shape Submerged in Liquid	95
	3.2.1 Expression for Center of Pressure (h^*)	97
	3.2.2 Worked Examples on Plane Vertical Surfaces	
	Submerged in Liquid	97
3.3	Inclined Plane Surface Submerged in Liquid	109
	3.3.1 Expression for Center of Pressure	110
	3.3.2 Worked Examples on Inclined Plane Surfaces	
2.4	Submerged in Liquid	111
5.4	Curved Surface Submerged in Liquid	115
25	3.4.1 Worked Examples on Curved Surfaces	110
5.5	Crowity Dome	119
5.0	Olavity Dallis	119
3.7	Lock Gates	122
4. Flu	id Masses Subjected to Acceleration	133
<u>/</u> 1	Introduction	133
4.1	D'Alembert's Principle	133
4.2	Fluid Masses Subjected to Horizontal Acceleration	134
4.5	Fluid Masses Subjected to Vertical Acceleration	134
4.5	Fluid Masses Subjected to Acceleration along Inclined Plane	140
5. Bu	oyancy and Flotation	145
5.1	Introduction	145
	5.1.1 Buoyancy, Buoyant Force, and Center of Buoyancy	145
5.2	Archimedes' Principle	146

5.3	Metacenter 151				
5.4	Metacentric Height				
5.5	Determination of Metacentric Height				
	5.5.1	Analytical Method	152		
	5.5.2	Experimental Method	154		
5.6	Conditions of Equilibrium for a Floating Body 15				
5.7	Condit	Conditions of Equilibrium for a Submerged Body 156			
5.8	Maxin	Maximum Height of a Body Floating Vertically in Water 15			
5.9	Conica	al Buoys Floating in Liquid	161		
5.10	Time of	of Rolling/Oscillation of Floating Body	164		
5.11	Floatin	g Body Anchored at the Base	166		
5.12	Floatir	ng Body Containing Liquid	166		
6. Kin	emati	ics	172		
6.1	Introdu	action	172		
	6.1.1	Kinematics of Fluid Flow	172		
	6.1.2	Scalar, Vector, and Tensor Quantities	172		
6.2	Classif	fication of Fluid Flow	173		
	6.2.1	Three-, Two-, and One-Dimensional Flow	174		
	6.2.2	Steady and Unsteady Flow	175		
	6.2.3	Uniform and Non-uniform Flow	175		
	6.2.4	Laminar and Turbulent Flow	176		
	6.2.5	Compressible and Incompressible Flow	176		
	6.2.6	Rotational and Irrotational Flow	176		
	6.2.7	Ideal and Real Fluid Flow	177		
6.3	Metho	ds of Describing Fluid Motion	177		
	6.3.1	Lagrangian and Eulerian Flow Descriptions	177		
	6.3.2	Components of Acceleration in Other Co-ordinate			
		Systems	179		
	6.3.3	Fundamentals of Flow Visualization	182		
	6.3.4	Discharge or Rate of Flow	184		
	6.3.5	Average (Mean) Velocity (V)	184		
6.4	One-D	imensional Continuity Equation	185		
6.5	Three-	Dimensional Continuity Equations: Differential			
	Equati	on of Continuity in Cartesian Co-ordinates	189		
6.6	Contin	uity Equation in Polar Co-ordinates	194		
6.7	Continuity Equation in Cylindrical Polar Co-ordinates 196				
6.8	Continuity Equation in Spherical Polar Co-ordinates 198				
6.9	Conservation of Mass in Orthogonal Curvilinear Co-ordinates 199				
6.10	Equation of Continuity in the Lagrangian Method 200				
6.11	Equiva	alence of the Two Forms of the Equation of Continuity	201		
6.12	Bound	ary Surface	203		
6.13	Intensi	ve and Extensive Properties	206		
6.14	System versus Control Volume Approach 206				

6.15	Control Volume Transformation Equation	207		
	6.15.1 Continuity Equation for a Control Volume	209		
	6.15.2 Continuity Equation for an Infinitesimal Control Volume	213		
6.16	Circulation	215		
	6.16.1 Rotational Flow: Rotation and Vorticity	217		
6.17	Streamline			
6.18	Potential Function	225		
6.19	Stream Function	226		
	6.19.1 Cauchy–Riemann Equation	228		
6.20	Relationship Between Stream Function w and the Velocity			
0.20	Components V and V, in Cylindrical Polar Co-ordinates	232		
6.21	Orthogonality of Streamlines and Potential Lines	233		
6.22	Flow Net	235		
7. Flu	iid Dynamics	245		
71	Introduction	245		
7.1	Equation of Mation	243		
1.2	Equation of Motion in Cartagian Co. ordinates	240		
	(Applicable to Non viscous Eluid only)	246		
	(Applicable to Noll-viscous Fluid olly)	240		
	7.2.2 Euler's Equation along a Streamline	250		
	7.2.4 Alternative Forms of Bernoulli's Function	255		
	7.2.4 Alternative Form of Bernoulli's Equation	254		
7.2	7.2.5 Bernoulli's Equation: Principle of Conservation of Energy	255		
7.3	Bernoulli's Equation for Real Fluid Flow	256		
1.4	Practical Applications of Bernoulli's Theorem	264		
	7.4.1 Venturimeter	264		
	7.4.2 Online Meter	271		
	7.4.3 Pitot Tube	275		
7.5	Free Liquid Jet	278		
	7.5.1 Maximum Height Attained by the Jet	279		
	7.5.2 Time of Flight	279		
	7.5.3 Time to Reach Highest Point	279		
	7.5.4 Horizontal Range of the Jet	279		
	7.5.5 Value of θ for Maximum Range	280		
7.6	Impulse-Momentum Principle	280		
	7.6.1 Forces Exerted by a Flowing Fluid on a Pipe Bend	281		
7.7	Integral Approach	284		
	7.7.1 Control Volume Momentum Equation	284		
7.8	Law of Conservation of Angular Momentum or			
	Law of Conservation of Momentum of Momentum	285		
8. Vis	cous Flow	294		
8.1	Introduction	294		
	8.1.1 Classification of Viscous Flow	294		
	8.1.2 Relation Between Shear and Pressure Gradient in			
	Laminar Flow	295		

x Contents

8.2	Navier–Stokes Equation				
8.3	Exact Solutions of Navier-Stokes Equations				
8.4	Flow Through a Circular Pipe (Hagen–Poiseuille Theory)	304			
	8.4.1 Velocity Distribution	305			
	8.4.2 Power <i>P</i>	306			
	8.4.3 Frictional Resistance	307			
8.5	Laminar Flow Through Inclined Pipes	310			
8.6	Flow of Viscous Fluid Between Two Parallel Stationary Plates	311			
	8.6.1 To Find Maximum Velocity	313			
	8.6.2 Average Velocity	313			
	8.6.3 Pressure Distribution	314			
8.7	Flow of Viscous Fluid Between two Parallel Plates, if One				
	Plate is Moving with a Constant Velocity	315			
	8.7.1 Velocity Distribution	316			
8.8	Laminar Flow Near a Suddenly Accelerated Plane Surface	318			
8.9	Flow Between Two Concentric Rotating Cylinders	321			
8.10	Flow Between Two Coaxial Cylinders	323			
8.11	Hydrodynamic Lubrication	327			
	8.11.1 Slipper Bearing	327			
8.12	Flow Through Porous Media	333			
8.13	Viscosity Measurements	335			
	8.13.1 Coaxial Cylinder Viscometer	335			
	8.13.2 Capillary Tube Method	336			
	8.13.3 Falling Sphere-Type Viscometer	338			
8.14	Instability of Laminar Flow	339			
9. Tu	rbulent Flow	344			
9.1	Introduction	344			
9.2	Turbulent Fluid Motion and Turbulent Flow Field	344			
	9.2.1 Initiation of Turbulent Motion	345			
9.3	Classification of Turbulence	346			
9.4	Variation of Turbulent Fluctuations	347			
	9.4.1 Reynolds Stresses	348			
9.5	Boussinesq's Theory	352			
9.6	Prandtl's Mixing Length Theory	353			
9.7	Von-Karaman Similarity Concept	354			
9.8	Reynolds Rules of Averaging	356			
9.9	Continuity Equation for Turbulent Flow	356			
9.10	Reynolds Navier-Stokes Equations	357			
9.11	Energy Equation for Turbulent Flow	360			
	9.11.1 Explanation of the Various Terms	361			
	9.11.2 Simplification of Certain Terms	361			
9.12	Equation for Dissipation Rate of Energy (ε)	363			
	9.12.1 2D Laminar Flow	363			
	9.12.2 3D Laminar Flow	364			
	9.12.3 3D Turbulent Flow	364			

9.13 Solution of Reynolds Navier–Stokes (RNS) Equations		n of Reynolds Navier–Stokes (RNS) Equations	365		
	9.13.1	9.13.1 Velocity Distribution in Case of Flow Through			
		Pipes Using Mixing Length Hypothesis	365		
9.14	Measur	Measurement of Turbulence			
	9.14.1	Laser Doppler Anemometry	368		
	9.14.2	Pressure Transducers	368		
	9.14.3	1.3 Thermal (Hot Wire and Hot Film)			
		Anemometer	369		
10. Tł	eory o	of Boundary Layer	374		
10.	1 Intro	oduction	374		
10.	2 Desc	cription of Boundary Layer	374		
	10.2.	1 Laminar Boundary Layer in Pipes	377		
	10.2.	2 Turbulent Boundary Layer in Pipes	378		
10.	3 Bour	ndary Layer Thickness	379		
	10.3.	1 Displacement Thickness	379		
	10.3.	2 Momentum Thickness	380		
	10.3.	3 Energy Thickness	381		
10.4	4 Von-	Von-Karman Integral Momentum Equation			
	10.4.	1 Boundary Conditions	386		
10.	5 Lam	Laminar Flow Over a Flat Plate			
10.	6 Boui	ndary Layer Equations	390		
10.	7 Pran	Prandtl Boundary Layer Equation 39			
10.	8 Blasius Solution for Laminar Boundary Layer Flow 3				
10.8.1 Stretching Factor		393			
10.9 Turbulent Boundary Layer on a Flat Plate		ulent Boundary Layer on a Flat Plate	398		
10.10 Hydrodynamically Smooth and Rough Boundaries		401			
10.1	1 Bour	ndary Layer Separation	402		
10.11.1 Location of		1.1 Location of Separation Point	404		
	10.11	1.2 Methods of Controlling the Boundary			
		Layer	405		
II.Di	mensi	onal Analysis and Dynamic Similitude	412		
11.	l Intro	duction	412		
11.	11.2 Dimensions and Units		412		
11.	3 Dimensional Analysis				
11.4 Dimensionless (or Non-dimensional) Groups		414			
	11.4.	1 Some Important Terms	415		
11.:	5 Diffe	erent Methods of Dimensional Analysis	416		
	11.5.	1 Rayleigh's Method	416		
	11.5.	2 Buckingham's π -Theorem	423		
11.	5 Mod	el Studies	431		
11.	7 Type	es of Forces Acting in a Moving Fluid	433		
11.	8 Simi	larity Model Laws	433		
	11.8.	1 Classification of Models	435		

I 2. Flov	v Through Orifices and Mouthpieces	447		
12.1	Introduction	447		
12.2	Classification of Orifices			
12.3	Discharge Through a Sharp Edged Orifice			
12.4	Hydraulic Coefficients			
	12.4.1 Coefficient of Discharge	450		
	12.4.2 Coefficient of Resistance	452		
12.5	Experimental Determination of Hydraulic Coefficients	453		
	12.5.1 Jet Distance Measurement Method (by Measurement			
	of Co-ordinates/Trajectory Method)	453		
	12.5.2 Pitot Tube Method	455		
	12.5.3 The Momentum Method	455		
12.6	Velocity of Approach	456		
12.7	Discharge Through a Large Rectangular Orifice			
	(Flow Through a Vertical Orifice Under Low Heads)	460		
12.8	Discharge Through a Large Circular Orifice	461		
12.9	Flow Under Pressure Through Orifice	462		
12.10	Flow Through a Submerged (or Drowned) Orifice	463		
	12.10.1 Discharge Through a Wholly Drowned Orifice	463		
	12.10.2 Discharge Through a Partially Drowned Orifice	464		
12.11	Time of Emptying a Tank	465		
	12.11.1 Time of Emptying a Tank through an Orifice at its			
	Bottom	466		
	12.11.2 Time of Emptying a Hemispherical Tank			
	Through an Orifice at its Bottom	467		
	12.11.3 Time of Emptying a Conical Tank through an			
	Orifice at its Bottom	470		
	12.11.4 Time of Emptying a Circular Horizontal Tank	470		
	Through an Orifice at its Bottom	472		
	12.11.5 Time of Flow of Liquid From One Vessel to Another	473		
10.10	12.11.6 Time of Emptying or Filling Canal Lock	4/5		
12.12	Flow of Liquid from One Tank to Another Under Pressure	4//		
12.13	Classification of Mouthpleces	4//		
12.14	12.14.1 Loss of Head Due to Sudden Enlargement	478		
	12.14.1 Loss of Head Due to Sudden Contraction	479		
	12.14.2 Loss of Head at the Entrance of a Dine	480		
	12.14.5 Loss of Head at the Entrance of a Pipe	402		
	12.14.5 Loss of Head Due to an Obstruction in a Pine	483		
12 15	Discharge Through an External Mouthniece	483		
12.15	Pressure in an External Mouthpiece	486		
12.10	Discharge Through an Internal Mouthpiece	487		
12.1/	12.17.1 Discharge Through a Mouthpiece Running Free	487		
	12.17.2 Discharge Through a Mouthpiece Running Full	488		
12.18	Pressure in the Internal Mouthpiece	489		
	r r r r r r r r r r r r r r r r r r r			

12.19	Discharge Through a Convergent Mouthpiece 49				
12.20	Pressure in a Convergent Mouthpiece				
12.21	Discharge Through a Convergent-Divergent Mouthpiece				
12.22	Pressure in a Convergent-Divergent Mouthpiece				
3. Flov	v Over Notches and Weirs	503			
13.1	Introduction	503			
13.2	Types of Notches	504			
13.3	Discharge Over a Rectangular Notch	504			
13.4	Time of Emptying a Tank Over a Rectangular Notch	506			
13.5	Effect on the Discharge Over a Rectangular Notch Due to				
	Error in the Measurement of Head	507			
13.6	Discharge Over a Triangular Notch	508			
13.7	Advantages of a V-notch Over a Rectangular Notch	509			
13.8	Time of Emptying a Tank Over a Triangular Notch	509			
13.9	The Effect on Discharge Over a Triangular Notch Due to				
	Error in the Measurement of Head	510			
13.10	Discharge Over a Trapezoidal Notch	511			
13.11	Discharge Over a Stepped Notch	512			
13.12	The Effect of Velocity of Approach	514			
13.13	Classification of Weirs	514			
13.14	Discharge Over a Rectangular Weir	516			
13.15	Francis Formula for Discharge Over a Rectangular Weir				
13.16	Bazin's Formula for Discharge Over a Rectangular Weir				
13.17	Rehbock Formula				
13.18	Ventilation of Rectangular Weirs				
13.19	Time Required to Empty a Reservoir With a Rectangular Weir	523			
13.20	Discharge Over a Triangular Weir	524			
13.21	Discharge Over a Trapezoidal Weir	524			
	13.21.1 Cippoletti Weir	525			
13.22	Discharge Over a Narrow-Crested Weir	526			
13.23	Discharge Over a Broad-Crested Weir	527			
13.24	Discharge Over a Submerged or Drowned Weir	528			
13.25	Discharge Over a Sharp-Crested Weir	529			
13.26	Discharge Over an Ogee Weir	530			
13.27	Proportional Weir	531			
13.28	Experimental Determination of Weir Constants	533			
4. Flov	v Through Pipes	542			
14.1	Introduction	542			
14.2	Reynolds Experiment	543			
14.3	Loss of Energy in Pipes	547			
	14.3.1 Definitions	548			
14.4	Darcy-Weisbach Formula for Loss of Head in Pipes				
	(Major Loss Due to Friction in a Pipeline, say, $L > 500d$)	550			
	14.4.1 Colebrook Equation	558			

	14.4.2	Approximations of the Colebrook Equation	559	
14.5	Empiric	al Formulae	560	
	14.5.1	Chezy's Formula		
	14.5.2	Manning's Formula	562	
	14.5.3	Hazen–Williams Formula	562	
14.6	Energy	and Hydraulic Grade Lines	563	
14.7	Minor L	losses	566	
	14.7.1	Loss of Head Due to Sudden Enlargement	567	
	14.7.2	Loss of Head Due to Sudden Contraction	571	
	14.7.3	Loss of Head at Entrance in Pipe	572	
	14.7.4	Loss of Head at the Exit of a Pipe	573	
	14.7.5	Loss of Head at the Bends	574	
	14.7.6	Loss of Head Due to Fittings	574	
14.8	Combin	ation of Pipes	575	
	14.8.1	Flow Through Pipes in Series (or Flow Through		
		Compound Pipes)	576	
	14.8.2	Equivalent Size of a Compound Pipe	577	
	14.8.3	Dupuit's Equation	578	
	14.8.4	Flow Through Parallel Pipes	578	
	14.8.5	Discharge Through Branched Pipes	585	
14.9	Flow Th	rough Syphon Pipes	586	
	14.9.1	Determination of the Length of Inlet $\text{Leg } AQ$	587	
14.10	Loss of	Head in a Tapering Pipe	589	
14.11	Flow Through a Diversion Pipe or Bypass 59			
14.12	Pump in a Pipeline			
14.13	Pipe Network 59			
14.14	Power Transmission Through Pipes			
	14.14.1	Power Transmitted at the Outlet of the Pipe	600	
	14.14.2	Condition for Maximum Transmission of Power	600	
	14.14.3	Maximum Efficiency of Transmission of Power	600	
14.15	Flow Th	rough Nozzles	601	
	14.15.1	To Find Velocity at Nozzle Exit	602	
	14.15.2	Discharge Through the Nozzle	602	
	14.15.3	Power Available at the Nozzle Exit	602	
	14.15.4	Efficiency of Transmission	603	
	14.15.5	Condition for Maximum Power Transmission		
		Through a Nozzle	603	
14.16	Water H	ammer	605	
	14.16.1	Water Hammer Analysis for a Gradual Closure of		
		the Valve	606	
	14.16.2	Elastic Column Theory	609	
1 5. O pe	en Char	nnel Flow	618	
15.1	15.1 Introduction			

111110444		010
15.1.1	Basic Flow Concepts and Terminology	618
15.1.2	Geometric Elements	619
	15.1.1 15.1.2	15.1.1 Basic Flow Concepts and Terminology15.1.2 Geometric Elements

	15.1.3	Examples on Geometric Properties	621
15.2	Channel Types		
	15.2.1	General Classifications	621
	15.2.2	Classification of Fluid Flow Based on Froude	
		Number and Reynolds Number	621
15.3	Flow R	Regimes	622
15.4	4 Velocity Distribution		623
	15.4.1	Velocity Distribution Coefficients	624
	15.4.2	Expression for Energy Correction Factor and	
		Momentum Correction Factor	625
15.5	Basic H	Flow Equations	627
	15.5.1	Continuity Equation	627
	15.5.2	Energy Principle	627
15.6	Unifor	m Flow Discharge Through Open Channel By	
	Chezy'	's Formula	628
	15.6.1	Examples on Rectangular Channel	629
	15.6.2	Example on Trapezoidal Channel	630
	15.6.3	Example on Triangular Channel	630
15.7	Empiri	cal Formula for Chezy's Constant	630
	15.7.1	Examples on Empirical Formula for Chezy's	
		Coefficient	632
15.8	Most Economical Section of Channels		
	15.8.1	Introduction	635
	15.8.2	Most Economical Rectangular Section	636
	15.8.3	Examples on Rectangular Channels	637
	15.8.4	Most Economical Trapezoidal Channel	638
	15.8.5	Best Side Slope for the Most Economical	
		Trapezoidal Section	640
	15.8.6	Examples on Trapezoidal Section	641
	15.8.7	Most Economical Triangular Channel Sections	643
	15.8.8	Most Economical Circular Channel Sections	643
	15.8.9	Examples on Most Economical Circular	
		Channel	647
15.9	Non-ui	niform Flow Through Open Channels	647
	15.9.1	Specific Energy and Specific Energy Curve	647
	15.9.2	Specific Energy Curve	648
	15.9.3	Mathematical Expression for Critical Depth	648
	15.9.4	Mathematical Expression for Critical Velocity	649
	15.9.5	Mathematical Expression for Minimum Specific	
		Energy in Terms of Critical Depth	649
	15.9.6	Discharge Diagram	650
15.10	Hydrau	ilic Jump or Standing Wave	652
	15.10.1	Loss of Energy Due to Hydraulic Jump	654

l 6. Pote	ntial Flow	660
16.1	Introduction	660

16.2	Uniform Flow (U or U_0)	660		
	16.2.1 Uniform Flow Parallel to the <i>x</i> -Axis	661		
	16.2.2 Uniform Flow Parallel to the y-Axis	662		
16.3	Source Flow (q or m)	664		
16.4	Sink Flow $(-q \text{ or } -m)$	666		
16.5	Free Vortex Flow	669		
16.6	Superimposed Flow	671		
16.7	Source Near a Wall: Method of Image	678		
16.8	A Plane Source in a Uniform Flow/Source Placed in a			
	Rectilinear Flow/Flow Past a Half Body	680		
16.9	Doublet	688		
16.10	A Source and a Sink Pair in a Uniform Flow/Flow Past a			
	Rankine Oval Shape	691		
16.11	A Doublet in a Uniform Flow (Flow Past a Circular Cylinder)	695		
	16.11.1 Pressure Distribution	697		
	16.11.2 Determination of Center of Pressure (C_{1})	697		
16.12	Flow Past a Circular Cylinder with Circulation	698		
	16.12.1 Drag and Lift	700		
16.13	Complex Potential Function of Irrotational Flow	703		
	16.13.1 Conformal Transformation	704		
	16.13.2 Derivative of the Complex Potential	705		
	16.13.3 Milne Thomson Method to Determine Complex			
	Function	708		
16.14	Three-Dimensional Potential Flow	709		
	16.14.1 Three-Dimensional Sources and Sinks	709		
	16.14.2 A Three-Dimensional Doublet	710		
	16.14.3 A Three-Dimensional Rankine Half Body	711		
	16.14.4 Pressure Distribution	712		
	16.14.5 A Three-Dimensional Rankine Full Body	713		
17.Vor	tex Flow	719		
17 1	T (1)	710		
17.1	Introduction	719		
17.2	Classification of Vortex Flow	719		
	17.2.1 Forced Vortex Flow	719		
. – .	17.2.2 Free Vortex Flow	720		
17.3	Equation of Motion for a Vortex Flow	721		
17.4	Forced Vortex Flow	722		
17.5	Closed Cylindrical Vessel			
17.6	Total Pressure at the Top and Bottom of a Closed			
	Cylindrical Vessel Completely Filled With a Liquid	726		
17.7	Free Vortex Flow	727		
18. Con	npressible Fluid Flow	733		
18.1	Introduction	733		
18.2	Laws of Perfect Gases	734		
	18.2.1 Boyle's Law	735		

	18.2.2	Charles' Law	737
	18.2.3	Gay-Lussac's Law	737
18.3	Basic 7	Thermodynamic Relations	738
	18.3.1	Perfect Gas Equation	738
	18.3.2	Van der Waals Equation	741
18.4	Expans	sion and Compression of Perfect Gas	742
	18.4.1	Isothermal Process	742
	18.4.2	Adiabatic Process	744
18.5	Specifi	c Heat	745
18.6	Pressu	re at a Point in Compressible Fluid	748
18.7	Basic I	Equation of Compressible Flow	752
	18.7.1	One-Dimensional Continuity Equation	752
	18.7.2	Three-Dimensional Continuity Equations	753
	18.7.3	Energy Equation	756
	18.7.4	Momentum Equation	762
18.8	Propag	ation of Disturbance in Fluid	763
	18.8.1	Speed of Sound or Pressure Wave and Mach Number	763
	18.8.2	Mach Number (M)	766
10.0	18.8.3	Types of Flow	768
18.9	Area V	elocity Relationship for Compressible Flow	769
18.10	Compr	essible Fluid Flow Through Nozzles and Orifices	770
18.11	Mach (cone	774
18.12	Stagna	tion Pressure in Compressible Fluids	776
18.13	Measur	rement of Flow in Compressible Fluid	//9
	18.13.1	Mass Rate of Flow of Compressible Fluid Inrough	790
	10 12 2	Pitot Tubo	780
10 11	10.13.2 Shook	Wayas	782
10.14	SHOCK	waves	785
9. Imp	act of	Jet	792
19.1	Introdu	iction	792
19.2	Impuls	e-Momentum Principle	792
19.3	Impact	on Stationary Surface	793
	19.3.1	Plane Surface Perpendicular to the Jet	793
	19.3.2	Plane Surface Inclined to the Jet	795
	19.3.3	Curved Surface on Which the Jet Strikes Normally at	
		the Center	797
	19.3.4	Curved Surface on Which the Jet Strikes Tangentially	799
19.4	Impact	of Jet on Hinged Surfaces	801
19.5	Impact	of a Jet on Moving Surfaces	802
	19.5.1	Force on Flat Vertical Plate Moving in the Direction	
		of the Jet	803
	19.5.2	Force on an Inclined Plate Moving in the Direction of	
	10	the Jet	804
	19.5.3	Force on a Curved Plate When the Plate is Moving in	6 6 1
		the Direction of the Jet	806

I

	19.5.4	Force Exerted by a Jet of Water on a Series of Plates	000
		When the Jet Strikes Normal to the Direction of the Jet	808
	19.5.5	Force Exerted by a Jet of Water on a Series of Curved	
		Plates When the Jet Strikes Normal to the Direction of	
		the Jet	810
	19.5.6	Force Exerted by a Jet of Water on an Asymmetrical	
		Curved Plate When the Jet Strikes Tangentially	
		at One End	812
19.6	Jet Prop	pulsion	817
	19.6.1	Jet Propulsion of a Tank with an Orifice	818
	19.6.2	Jet Propulsion of Ships	819
20. Cen	trifuga	ll Pumps	826
20.1	Introdu	ction	826
	20.1.1	Selection of Centrifugal Pumps Based on	
		Specific Speed	826
20.2	Pump (Classification	827
20.3	Centrif	ugal Pumps	830
20.4	Priming	g of a Centrifugal Pump	830
20.5	Compo	nent Parts of a Centrifugal Pump	831
	20.5.1	Working of a Centrifugal Pump	832
20.6	Classifi	ication of Centrifugal Pumps	833
	20.6.1	On the Basis of Casing	833
	20.6.2	According to Relative Direction of Flow	
		Through Impeller	834
	20.6.3	Number of Entrances to the Impeller	834
	20.6.4	Working Head	835
20.7	Classifi	ication of Impeller	835
20.8	Express	sion for the Work Done on the Impeller/Fundamental	
	Equation	on of a Centrifugal Pump	835
20.9	Head C	Lapacity Relationship	840
20.10	Pressur	e Changes in Centrifugal Pump	841
20.11	Ideal E	fficiency of a Pump	844
20.12	Maxim	um Suction Lift	845
20.13	Definiti	ions of Heads and Efficiencies of a Centrifugal Pump	846
	20.13.1	Heads of a Pump	846
	20.13.2	Efficiencies of a Centrifugal Pump	848
20.14	Minim	um Starting Speed	853
20.15	Effect of	of Variation in Speed	855
20.16	Specifi	c Speed and Pump Similarity	856
20.17	Pump S	Similarity	859
20.18	Charac	teristic Curves of Centrifugal Pumps	861
20.19	Multist	age Centrifugal Pump	863
20.20	Effect of	of the Number of Blades	866
20.21	Net Pos	sitive Suction Head	866
20.22	Cavitat	ion in Pumps	867

21.Reci	iprocating Pumps	875		
21.1	Introduction	875		
21.2	Types of Reciprocating Pumps			
21.3	Working of a Reciprocating Pump	876		
21.4	Theory of Reciprocating Pump	878		
21.5	Simple Indicator Diagram	882		
21.6	Effect of Acceleration	883		
21.7	Maximum Speed of the Rotating Crank of a Reciprocating			
	Pump	886		
21.8	Effect of Acceleration and Friction	889		
	21.8.1 Effect of Friction in Suction and Delivery Pipes			
	on Indicator Diagram	890		
	21.8.2 Effect of Acceleration and Friction in Suction and			
	Delivery Pipes on Indicator Diagram	890		
21.9	Effect of Air Vessel	893		
21.10	Work Saved by Fitting Air Vessel	898		
	21.10.1 Work Saved in a Single Acting			
	Reciprocating Pump	898		
	21.10.2 Work Saved in a Double Acting			
	Reciprocating Pump	900		
21.11	Multiple Cylinder Pumps	903		
	21.11.1 Double Cylinder Pump	903		
	21.11.2 Triple Cylinder Pump	903		
22. Misc	cellaneous Hydraulic Machines	909		
22.1	Introduction	909		
22.2	Hydraulic Ram (Hydram)	909		
22.3	Air Lift Pump	911		
22.4	Jet Pump (Mixed Flow Pump)	912		
22.5	Hydraulic Accumulator	913		
22.6	Hydraulic Intensifier or Pressure Intensifier	914		
22.7	Hydraulic Lift (Direct Acting Hydraulic Lift)	916		
22.8	Suspended Hydraulic Lift	917		
22.9	Hydraulic Crane	918		
22.10	The Hydraulic Coupling	919		
23. Hyd	raulic Machines—Turbines	923		
23.1	Introduction	923		
23.2	Types of Turbines	923		
2012	23.2.1 According to Hydraulic Action/Type of	/=0		
	Energy Available at Inlet	923		
	23.2.2 According to Direction of Flow of Water	220		
	Through Runner	925		
	23.2.3 According to Position of Turbine Shaft	925		
	23.2.4 According to Head	925		

	23.2.5	According to Specific Speed	926	
23.3	Layout of a Hydroelectric Power Plant			
23.4	Heads and Head Loss			
23.5	Power Produced by an Impulse Turbine			
23.6	Efficien	cies of a Turbine	929	
	23.6.1	Hydraulic Efficiency	929	
	23.6.2	Mechanical efficiency	930	
	23.6.3	Volumetric Efficiency	930	
	23.6.4	Overall Efficiency	931	
23.7	Compor	nent Parts of Pelton Wheel	931	
	23.7.1	Nozzle with Flow Regulating Mechanism	931	
	23.7.2	Casing	932	
	23.7.3	Runner and Buckets	932	
	23.7.4	Hydraulic Brake	933	
23.8	Velocity	Triangle and Work Done for Pelton Wheel	933	
23.9	Working	g Proportion of a Pelton Wheel	936	
23.10	Radial F	Flow Impulse Turbine	949	
23.11	Reaction	n Turbine	951	
23.12	Classific	cation of Reaction Turbine	952	
23.13	Main Co	omponents of a Radial Flow Reaction Turbine	953	
	23.13.1	Casing	953	
	23.13.2	Guide Mechanism	953	
	23.13.3	Runner	954	
	23.13.4	Draft Tube	954	
23.14	Express	ion for Work Done in an Inward Radial Flow		
	Turbine		957	
23.15	Outward	d Flow Reaction Turbine	964	
23.16	Mixed F	Flow Turbine	965	
23.17	Power a	nd Efficiency	965	
	23.17.1	Working Proportions	966	
23.18	Propelle	er and Kaplan Turbine	970	
23.19	Runawa	y Speed	975	
23.20	Surge Ta	anks	975	
23.21	Perform	ance of Hydraulic Turbines	977	
	23.21.1	Performance Under Unit Head—Unit Ouantities	977	
	23.21.2	Performance Under Specific Conditions	980	
23.22	Characte	eristics of Turbines	983	
	23.22.1	Main Characteristics	983	
	23.22.2	Operating Characteristics	984	
	23.22.3	Constant Efficiency Curves	985	
			000	
Index			993	

1 Fundamentals of Fluid Mechanics

In this chapter, we discuss the properties that are encountered in the analysis of fluid flow. First we discuss the concept of a fluid and then classify the fluid through a rheological diagram. This is followed by a description of the properties such as density, specific volume, specific gravity, relative density, and thermodynamic properties. Then we treat the fluid as continuum and describe its viscosity property, which plays a dominant role in most aspects of fluid flow. Finally, other properties, such as vapor pressure, compressibility, capillarity, and surface tension are also considered.

I.I INTRODUCTION

The science of mechanics of fluids based on the fundamental laws of motion (similar to those applied to mechanics of solids) is known as *fluid mechanics*. Thus, fluid mechanics is the study of fluids in motion or at rest and the subsequent effects of the fluids on the boundaries, which may be either solid surfaces or other fluids. In essence, fluid mechanics combines the rational equations of ideal fluid flow with empirical equations of real fluid flow and correlates the physical analysis with results from experiments. A great deal of theoretical treatment is available only in case of certain idealized situations, which may not be valid in real-life problems. Thus, recourse to experiments and numerical approaches is often found useful to deal with complex fluid flows. Traditionally, the engineering science of fluid mechanics has been developed through an understanding of fluid properties, the application of basic laws of mechanics and thermodynamics, and an orderly experimentation.

In this chapter, several fluid properties, such as density, viscosity, surface tension, and vapor pressure are described. Density and viscosity play major roles in open and closed channel flows and in the flow around immersed objects. The consideration of surface tension is important in the formation of droplets, in the flow of small jets, and in the formation of capillary waves. Vapor pressure accounts for changes from liquid to gas and is particularly important when reduced pressures are encountered.

2 Fluid Mechanics and Machinery

1.2 CONCEPT OF A FLUID

A fluid is a substance that deforms continuously when subjected to a shear stress, no matter how small that shear stress may be. This property is important since it distinguishes a liquid from a solid, no matter how viscous the liquid may be. A shear force is the force component tangent to a surface, and this force divided by the area of the surface is the average shear stress over the area. Shear stress at a point is the limiting value of the shear force to area, as the area is reduced to the point or tends to zero.

A solid can resist a shear stress by a static deformation, whereas a fluid cannot. Under the action of shear stress on a solid, the amount of unit deformation will be proportional to the unit stress, and if the elastic limit is not exceeded, the solid returns to its original shape on removal of the stress. The molecules of a solid are more closely packed as compared to that of a fluid. Attractive forces between the molecules of a solid are much larger than those of a fluid. A solid body undergoes either a definite deformation or breaks completely when the shear stress is applied on it. The amount of deformation is proportional to the magnitude of the applied stress up to some limiting condition.

Any shear stress applied to a fluid, no matter how small, will result in motion of the fluid. The fluid moves and deforms continuously as long as the shear stress is applied. As a corollary, we can say that a fluid at rest must be in a state of zero shear stress, a state often called the hydrostatic stress condition in structural analysis. In this condition, Mohr's circle for stress reduces to a point and there is no shear stress on any plane cut through the element under the stress.

If a shear stress τ is applied at any location in a fluid, the element 011^1 (Fig. 1.1) that is initially at rest will move to 022^1 and to 033^1 , etc. In other words, the tangential stress in a fluid body depends on the velocity of deformation and vanishes as this velocity approaches zero.

All liquids and gases are fluids, as they undergo deformation continuously when subjected to even the slightest shear force. We shall hereafter refer to liquids and gases only as fluids. A liquid has a definite volume and it takes the shape of

Fig. I.I Shear stress on a fluid body

the vessel containing it. It would occupy the vessel fully or partially depending on its content and it will have free surface. However, a gas has no definite shape, and it would expand and occupy the vessel fully and it cannot have a free surface. The volume of a liquid varies very slightly due to the change in temperature and pressure. This variation is so small that for all practical purposes it is often negligible, and hence, a liquid can be considered as incompressible. But a gas undergoes considerable change in volume due to changes in temperature and pressure, and hence, gas is a compressible fluid.

Rheology is a science of deformation and flow. Fluids may be classified as Newtonian and non-Newtonian. Figure 1.2 shows such a classification of fluids. In the case of solid, shear stress τ is proportional to the magnitude of the deformation, but in many fluids the shear stress is proportional to the time rate of angular deformation. For Newtonian fluids, the slope of the line is equal to the viscosity. Glycerin, air, water, kerosene, thin lubricating oil (under normal working conditions), etc., are some of the examples of Newtonian fluids. The ideal fluid, with no viscosity, is rep-

resented by the horizontal axis, whereas the true elastic solid is represented by the vertical axis. A plastic that sustains a certain amount of stress before suffering a plastic flow can be shown by a straight line intersecting the vertical axis at the yield stress. There are certain non-Newtonian fluids in which μ varies with the rate of deformation. Some examples of non-Newtonian fluids are human blood and thick lubricating oil. The viscous behavior of non-Newtonian fluid may be prescribed by the power law equation

$$\tau = k \left(\frac{du}{dy}\right)^n \tag{1}$$

Here, n = flow behavior index and k = consistency index.

For Newtonian fluids, the consistency index *k* becomes dynamic viscosity μ and the flow behavior index *n* assumes a unity value.

Fluids such as milk, blood, clay, and liquid cement for which the flow behavior index n < 1, are called pseudoplastic. Fluids for which n > 1 are called dilatants. Concentrated solution of sugar and aqueous suspension of rice starch are examples of dilatants.

Example 1.1 Classify the substances that have the rates of deformation corresponding to shear stresses shown in Table 1.1.

Table 1.1				
du/dy (rad/s)	0	Ι	3	5
τ (kPa or kN/m²)	15	20	30	40

Fig. 1.3 Shear stress versus rate of deformation graph

Solution Figure 1.3 indicates the classification as non-Newtonian. Please note that at zero deformation, shear stress is not zero.

1.3 ENGINEERING SYSTEM OF UNITS

In this book, the International System of Units is utilized throughout. Four fundamental quantities of measurement (from which others can be derived) are length, mass, force, and time. In the International System, they are meter (m), kilogram (kg), newton (N), and second (s) (Table 1.2).

The two unit prefixes in the International System that are commonly encountered in fluid mechanics problems are kilo (k) and milli (m), which indicate factors of 1000 and 0.001, respectively. The prefixes used for SI units are detailed in Table 1.3.

Quantities	International system
Length	Meter (m)
Mass	Kilogram (kg)
Force	Newton (N) (=kg-m/s²)
Time	Second (s)
Weight	Newton (N)
Area	m ²
Volume	m ³
Velocity	m/s
Acceleration	m/s ²

Table 1.2 SI units of measurements

Any characteristic of a system is called its

PROPERTIES OF FLUID

1.4

property. Some familiar properties are pressure p, temperature T, volume V, and mass m. The list can be extended to include less familiar ones such as viscosity, thermal conductivity, modulus of elasticity, thermal expansion of coefficient, electric resistivity, and even velocity and elevation.

Two important parameters that tend to indicate the heaviness of substances are mass density and specific weight (unit weight). Mass density is typically used

 Table 1.4
 Variation of mass density

Factors by	Prefix	Symbol	with respect to temperature		
which unit is multiplied			Temperature (°C) Mass density (kg/m³)	
1012	Tera	Т			
109	Giga	G	0	1000	
106	Mega	М	10	1000	
10 ³	Kilo	k	20	998	
10 ²	Hecto	h	30	996	
10	Deka	da	40	992	
10-1	Deci	d	40	972	
10 ⁻²	Centi	с	50	988	
I 0 ⁻³	Milli	m	60	984	
10 ⁻⁶	Micro	μ	70	978	
10 ⁻⁹	Nano	n	80	971	
10-12	Pico	Р	90	945	
10-15	Femto	f	20	705	
10-18	Atto	а	100	958	

 Table 1.3
 Prefixes for SI units

to characterize the mass of the fluid system, and specific weight is typically used to characterize the weight of the system.

The density of a substance, in general, depends on temperature and pressure. The density of most gases is proportional to pressure and inversely proportional to temperature.

Liquids and solids, on the other hand, are essentially incompressible substances and the variation of their density with pressure is usually negligible. For example, at 20°C the density of water changes from 998 kg/m³ at 1 atm to 1003 kg/m³ at 100 atm, a change of just 0.5%.

The density of liquids and solids depends more strongly on temperature than it does on pressure. For example, the density of water changes from 998 kg/m³ at 20°C to 975 kg/m³ at 75°C, a change of 2.3%. In view of this, the values of mass density reported in Table 1.4 are expected to be invariant with the alterations in pressure.

Mass density It is also known as specific mass of a liquid and may be defined as the mass per unit volume. It is usually denoted by ρ (rho).

$$\rho = \frac{m}{V} \text{ kg/m}^3 \tag{1.2}$$

Figure 1.4 shows a graphical representation of mass density variation with temperature. It can be seen that with an increase in temperature, mass density decreases.

6 Fluid Mechanics and Machinery

Fig. 1.4 Variation of mass density with respect to temperature

To compare the different fluids, Table 1.5 lists mass density at 20°C. It can be seen that mercury has a mass density that is 13.6 times that of water.

As the water temperature range of the data is considerable, one requires relationships for ρ as functions of temperature *T*. Streeter and Wylie (1979) have given the variation of ρ for water with *T* ranging from 0°C to 100°C in a tabular form. Using these data, the following best-fit equation is obtained in SI units.

$$\rho = 958.4 + 41.5 \left\{ \left(\frac{71}{100 - T} \right)^5 + \left(\frac{415}{415 + T} \right)^6 \right\}^{-0.18}$$
(1.2a)

The maximum percentage error in the use of Eqn (1.2a) is 1.0, which occurs in a very narrow band of temperature.

Weight density It (also known as specific weight or unit weight) is defined as the weight per unit volume. It is usually denoted by γ (gamma).

$$\gamma = \frac{W}{V} N/m^3$$
 (1.3)

Figure 1.5 shows a graphical representation of specific weight with respect to temperature.

Note In engineering, we find use of specific weight as well as unit weight in lieu of each other.

Table 1.5Approximate physical prop-
erty (mass density) of some common
liquids at 1 atmospheric pressure and
at 20°C

Fluids	ho (kg/m³)
Water	998
Sea water	1028
Mercury	13,570
Kerosene	819
Carbon tetrachloride	1588
Glycerin	1258
Gasoline	719
Benzene	879
Ammonia	829
Air	1.205

Fig. 1.5 Variation of specific weight with respect to temperature

The relationship between mass density, and specific weight is

$$\rho = \frac{\gamma}{g} \text{ or } \gamma = \rho g$$
(1.4)

Variations of specific weight are analogous to those of mass density, as described earlier. Table 1.6 shows variation of specific weight with respect to temperature and Table 1.7 shows specific weight at 20°C.

Temperature	Specific weight	common liquids at 1 atmospheric pressure and at 20°C		
(°C)	(kN/m³)	Fluid	γ (kN/m ³)	
0	9.81			
10	9.81	Water	9.81	
20	9.79	Sea water	10.08	
30	9.77	Mercury	133.1	
40	9.73	Kerosene	8.03	
50	9.69	Carbon tetrachloride	15.57	
60	9.65	Glycerin	12.34	
70	9.59	Gasoline	7.05	
80	9.53	Benzene	8.62	
90	9.47	Ammonia	8.13	
100	9.40	Air	0.01182	

Table 1.6	Variation of specific weight			
with respect to temperature				

Table 1.7 Approximate physicalproperty (specific weight) of some common liquids at I atmospheric **Specific volume** It is defined as the volume per unit mass of a fluid. It is usually denoted by V_s .

$$V_s = \frac{V}{m} = \frac{1}{\rho} \,\mathrm{m}^3/\mathrm{kg}$$
 (1.5)

Specific gravity It is a parameter that indicates how heavier is the given substance than water. It is defined as the ratio of the specific weight of the liquid to the specific weight of a standard fluid. It is denoted by *S*. For liquids, the standard fluid is pure water at 4° C. So,

$$S = \frac{\gamma_{\text{liquid}}}{\gamma_{\text{water}}} \text{ or } \frac{\rho_{\text{liquid}}}{\rho_{\text{water}}}$$
(1.6)

Specific gravity has no unit, i.e. it is a dimensionless quantity.

Though specific gravity is a dimensionless quantity, in SI units, the numerical value of the specific gravity of a substance is exactly equal to its density in g/cm³ or kg/L (or 0.001 times density in kg/m³). For example, density of water at 4°C is 1 g/cm³ = 1 kg/L = 1000 kg/m³. The specific gravity of mercury at 0°C is 13.6. Therefore, its density at 0°C is 13.6 g/cm³ = 13.6 kg/L = 13,600 kg/m³. Table 1.8 lists specific gravity at 20°C.

Relative density It is a dimensionless ratio of the densities of two materials. This term is similar to specific gravity except that the reference material is water. Mathematically, relative density is expressed as

$$G = \frac{\rho_{\text{object}}}{\rho_{\text{reference}}}$$
(1.7)

In Eqn (1.7), ρ is the density of the two materials in the same unit (e.g., kg/m³, g/cm³).

Relative density is a dimensionless term, since it is a ratio between two quantities of the same unit. When the reference material is not specified, it is usually understood to be water at 4°C.

It is to be noted that the relative density of an object relative to mercury is different from that with respect to water (specific gravity). The term specific gravity used in CGS and FPS units is the same as relative density. Relative densities for water and air are 1.00 and 1.204×10^{-3} , respectively.

Density of ideal gases (thermodynamic properties) Gases are highly compressible, and hence thermodynamic

Table 1.8	Approximate physical
property	(specific gravity) of some
common	liquids at 1 atmospheric
pressure	and at 20°C

Fluids	S
Water	1.0
Sea water	1.03
Mercury	13.6
Kerosene	0.82
Carbon tetrachloride	1.59
Glycerin	1.26
Gasoline	0.72
Benzene	0.88
Ammonia	0.83
Air	0.0013
Gold	19.2

properties play an important role. With the change of pressure and temperature, the gases undergo large variation in their density. It is convenient to have some simple relations among the properties that are sufficiently general and accurate. Any equation that relates to the pressure, temperature, and density (or specific volume) of a substance is called an *equation of state*. The simplest and best-known equation of state for substances in the gas phase is the ideal gas equation of state and is expressed as

$$pV_s = RT \text{ or } p = \rho RT$$
 (1.8)

or

$$\frac{p}{\rho} = RT \tag{1.9}$$

where

 $p = absolute pressure in N/m^2$

- $V_{\rm s}$ = specific volume in m³/kg
- T = absolute temperature in °K (temperature scale in the SI system is the Kelvin scale and the temperature unit on this scale is the kelvin) = 273° + t in °C

$$R = gas constant$$

The gas constant *R* is different for each gas, and is determined from $R = R_u/M$, where R_u is the universal gas constant (8.314 kJ/kmol K) and *M* is the molecular weight of the gas. The values of *R* and *M* for several substances are given in Table 1.9.

Then, mass density is given by

$$\rho = \frac{1}{V_s} = \frac{p}{RT} \text{ kg/m}^3 \tag{1.10}$$

and weight density is given by

$$\gamma = \rho g = \frac{gp}{RT} \text{ N/m}^3 \tag{1.11}$$

As already mentioned, the gas constant R depends on the particular gas. The dimension of R is obtained as follows:

We know the relationship

$$pV_s = RT$$

From that, we get

$$R = \frac{p}{\rho T}$$

In SI units *p* is expressed in N/m², ρ is expressed in kg/m³, and *T* is expressed in K. Therefore,

$$R = \frac{N/m^2}{kg/m^3 \times K} = \frac{N-m}{kg-K} = \frac{J}{kg-K}$$
$$R \text{ in SI} = 287 \frac{J}{kg-K}$$

Substance	Molecular weight (M)	Gas constant (R)
Air	28.97	0.2870
Ammonia	17.03	0.4882
Argon	39.95	0.2081
Bromine	159.81	0.05202
lsobutene	58.12	0.1430
n-butane	58.12	0.1430
Carbon dioxide	44.01	0.1889
Carbon monoxide	28.01	0.2968
Chlorine	70.905	0.1173
Ethane	30.070	0.2765
Ethylene	28.054	0.2964
Fluorine	38.0	0.2187
Helium	4.003	2.077
Hydrogen	2.016	4.124
Krypton	83.8	0.09921
Methane	16.04	0.5182
Neon	20.183	0.4119
Nitrogen	28.01	0.2968
Oxygen	32.0	0.2598
Propane	44.097	0.1885
Propylene	42.08	0.1976
Sulfur dioxide	64.06	0.1298
Tetra chloromethane	153.82	0.05405
Xenon	131.3	0.06332

 Table 1.9
 Molecular weight and gas constant of some substances

For an ideal gas of volume \forall , mass *m*, and the number of moles N = m/M, the ideal gas equation of state can also be written as $p \forall = mRT$ or $p \forall = NR_{\mu}T$.

Another fundamental equation of a perfect gas between two state points is as given

$$\frac{p_1 \forall_1}{T_1} = \frac{p_2 \forall_2}{T_2} \tag{1.12}$$

Pressure Pressure or intensity of pressure is nothing but the compressive stress on a fluid and is given by

Pressure,
$$p = \frac{\text{Force } F}{\text{Area } A}$$
 (for uniform pressure) (1.13)

$$=\frac{dF}{dA}$$
 (for variable pressure) (1.14)

The unit of pressure is $N/m^2 = Pa$; Pa stands for pascal. Other commonly used units are kPa (kilopascal) = 1000 N/m² and bar = 100 kPa = 10⁵ N/m².

Sometimes, the pressure is expressed in terms of the height *h* of an equivalent column of fluid of density ρ . Thus,

$$p = \rho g h = \gamma h \tag{1.15}$$

and *h* (meters of fluid) = p/γ . In such cases, *h* is called the pressure head.

Note For more details, the readers are advised to refer to Chapter 2.

Example 1.2 Calculate the specific weight, specific mass, specific volume, and specific gravity of a liquid having a volume of 6 m^3 and weight of 44 kN.

Solution Given: Volume of liquid = $6m^3$, weight of liquid = 44 kN

$$\gamma = \frac{44}{6} = 7.33 \text{ kN/m}^3 \text{ (Ans)}$$

$$\rho = \frac{\gamma}{g} = \frac{7.33}{9.81} \times 1000 = 747.19 \text{ kg/m}^3 \text{ (Ans)}$$

$$V_s = \frac{1}{\rho} = \frac{1}{747.19} = 0.00134 \text{ m}^3/\text{ kg} \text{ (Ans)}$$

$$S = \frac{7.33}{9.81} = 0.747 \text{ (Ans)}$$

Example 1.3 A volume of 2.5 m^3 of certain liquid weighs 9.81 kN. Determine the specific weight, mass density, and specific gravity of the liquid.

Solution Given: Volume of liquid = 2.5 m^3 , weight of liquid = 9.81 kN Therefore,

$$\gamma = \frac{W}{V} = \frac{9.81}{2.5} = 3.924 \text{ kN/m}^3 \quad (Ans)$$
$$\rho = \frac{m}{V} = \frac{1000}{2.5} = 400 \text{ kg/m}^3 \quad (Ans)$$
$$S = \frac{3924}{9810} = 0.4 \quad (Ans)$$

Example 1.4 Determine the mass density, specific weight, and specific volume of a liquid whose specific gravity is 0.85.

© Oxford University Press

12 Fluid Mechanics and Machinery

Solution Given:
$$S = 0.85$$
; $S = 0.85 = \frac{\gamma_{\text{liquid}}}{\gamma_{\text{water}}} = \frac{\gamma_{\text{liquid}}}{9.81}$

Therefore,
$$\gamma_{\text{liquid}} = 8.3385 \text{ kN/m}^3$$
 (Ans)

But,
$$\rho = \frac{\gamma}{g} = \frac{8338.5}{9.810} = 850 \text{ kg/m}^3$$
 (Ans)

Specific volume, $V_s = \frac{1}{\rho} = 0.00117 \text{ m}^3/\text{kg}$ (Ans)

Example 1.5 A mass of liquid weighs 500 N, corresponding to g = 9.81 m/s². Find (a) its mass and (b) its weight in a planet with the acceleration due to gravity 3.2 m/s² and 20.0 m/s².

Solution Let W = weight of liquid and m = mass of the same liquid

- (a) W = mg or $500 = m \times 9.81$ Therefore, m = 50.96 kg (Ans)
- (b) Mass of the fluid remains constant, regardless of its location. Hence, m = 50.96 kg at all locations.

If
$$g_1 = 3.2 \text{ m/s}^2$$
, $W_1 = mg_1 = 50.96 \times 3.2 = 163.072 \text{ N}$ (Ans)
If $g_2 = 20.0 \text{ m/s}^2$, $W_2 = 50.96 \times 20.0 = 1019.2 \text{ N}$ (Ans)

Example 1.6 The variation in the density of water ρ with temperature *T* in the range $20^{\circ}C \le T \le 50^{\circ}C$ is given in Table 1.10.

Table 1.10								
ρ (kg/m³)	998.2	997.I	995.7	994. I	992.2	990.2	988. I	
Temperature (°C)	20	25	30	35	40	45	50	

Use these data to determine an empirical equation of the form,

 $\rho = A + BT + CT^2$

This can be used to predict the density over the range indicated.

Solution Refer to Fig. 1.6.

 $\rho = 1001 - 0.053T - 0.004T^2$ (Ans)

Example 1.7 A gas weighs 20 N/m³ at 30°C and at an absolute pressure of 35×10^4 N/m². Determine the gas constant and density of the gas.

Solution Given: weight density $\gamma = 20 \text{ N/m}^3$ temperature $t = 30^{\circ}\text{C}$

Therefore, $T = 273 + 30 = 283^{\circ}$ K

and pressure, $p = 35 \times 10^4 \text{ N/m}^2$

Fig. 1.6 Variation of mass density with respect to temperature

But $\rho = \frac{\gamma}{g} = \frac{20}{9.81} = 2.0387 \text{ kg/m}^3$ (Ans)

From the relation $pV_s = RT$, we get

$$R = \frac{p}{\rho T} = \frac{35 \times 10^4}{2.0387 \times 283} = 606.64 \frac{\text{J}}{\text{kg-K}} \quad (Ans)$$

1.5 FLUID AS A CONTINUUM

Fluid flows may be modeled either on a macroscopic level or on a microscopic level. The macroscopic model regards the fluid as a continuum and the description is in terms of variations of the macroscopic velocity, density, pressure, and temperature with distance and time. On the other hand, the microscopic or molecular model recognizes the particulate structure of a fluid as a myriad of discrete molecules, and ideally, provides information on the position and velocity of every molecule at all times.

All fluids are composed of molecules in constant motion. However, in most of the engineering applications, we are interested in the average or the mean or the macroscopic effects of many molecules. It is these macroscopic effects that we can perceive and measure. We, thus, treat a fluid as an infinitely divisible substance, a continuum, [continuum means that the distance between fluid particles (or molecules) or the mean free path is small (i.e., small compared to any physical dimensions of the problem)] and do not concern ourselves with the behavior of any individual molecules. The concept of a continuum forms the basis of classical fluid mechanics. The continuum assumption is valid in treating the behavior of fluids under normal conditions.

As a consequence of the continuum assumption, each fluid property is assumed to have a definite value at each point in space. Thus, fluid properties such as density, temperature, velocity, etc. are considered to be continuous functions of position and time. To illustrate the concept of a property at a point, consider the manner in which we determine the density at a point. A region of fluid is shown in Fig. 1.7(a). We are interested in determining the density at the point *c*, whose coordinates are x_0 , y_0 , and z_0 . The density is defined as mass per unit volume. Thus, the mean or average density within the volume *v* would be given by $\rho = \frac{m}{2}$.

In general, this will not be equal to the value of density at *c*. To determine the density at *c*, we must select a small volume δv , surrounding point *c*, and then determine the ratio $\delta m/\delta v$. To answer the question, 'How small can we make the volume δv ?', let us take the ratio $\delta m/\delta v$ [Fig. 1.7(b)]. Then allow the volume to shrink continuously in size, assuming that the volume δv is relatively large initially. The average density tends to approach an asymptotic value as the volume is shrunk to enclose only homogeneous fluid in the immediate neighborhood of point *c*. When δv becomes further small that it contains only few number of molecules, it becomes impossible to fix a definite value for $\delta m/\delta v$; then the value will vary erratically as molecules cross into and out of the volume.

Thus, there is a lower limiting value of δv , designated as $\delta v'$ shown in Fig. 1.7(b), which is allowable for use in defining fluid density at a point. The density at a point is defined as

$$\rho = \lim_{\delta \nu \to \delta \nu'} \frac{\delta m}{\delta \nu} \tag{1.15}$$

Since the point *c* was arbitrary, the density at any point in the fluid could be determined in a similar manner. If density determination were made simultaneously at an infinite number of point in the fluid, we would obtain an expression for the density distribution as a function of the space coordinates $\rho = \rho(x, y, z)$, at the given instant of time. Thus, the complete representation of density is given by $\rho = \rho(x, y, z, t)$. Since the density is a scalar quantity, the field representation is a scalar, representing only a magnitude.

Example 1.8 The mean free path λ of the molecules in air is approximately given by

$$\lambda = 3.8 \times 10^{-5} \frac{T}{p}$$

Fig. 1.7 Definition of density at a point

Altitude (m)	Temperature (°C)	Pressure (N/m ²)	Density (kg/m³)
1800	3.0	81,000	1.025
4600	-14.7	57,000	0.77
8500	-40.0	33,000	0.493
14,000	-54.0	15,000	0.237
21,000	-54.0	4500	0.0715
31,000	-54.0	1000	0.0171
46,000	45.0	144	0.0016
61,000	71.0	32	0.00032
76,000	-22.0	5.5	0.000077

 Table 1.11
 Atmospheric temperature, pressure, and density values at different altitude

where T is the temperature in K and p is the pressure in N/m^2 . The atmospheric temperature, pressure, and density at different altitudes are given in Table 1.11.

Calculate the mean free path at each altitude. If the flow of air through a 40-mm diameter pipe were to be considered, then state above what altitude the continuum approach will fail (i.e., the mean free path will be of the order of one-hundredth of the pipe diameter).

Solution Use the relation $\lambda = 3.8 \times 10^{-5} \frac{T}{p}$.

 Table 1.12
 Computed values

 ues of mean free path

76,000

Table 1.12 shows computed values of mean free path.

The continuum hypothesis, therefore, holds up to about 61 km (*Ans*)

Note This example is only for illustrative purpose. The value may be sensitive to the relationship used for mean free path.

ues of mean f	ree path
Altitude (m)	λ (m)
1800	1.3 × 10 ⁻⁷
14,000	5.6 × 10 ⁻⁷
46,000	8.4 × 10 ⁻⁵
61,000	4.1 × 10 ⁻⁴

1.74 × 10⁻³

I.6 VISCOSITY

Viscosity is the most important among all properties, without which the diverse field of fluid mechanics of today might not have come into existence. Viscosity is derived from the word *viscous*, which means sticky, adhesive, or tenacious. We say coconut oil is thin and castor oil is thick; when spilled over inclined surface the so-called thin oil flows down faster compared to the thick oil. Obviously, the terms *thin* and *thick* do not refer to the density of the liquid but to the easiness with which it flows. Similar to solids, fluids also offer resistance to shearing forces/stresses. It is primarily due to cohesion (attraction between similar molecules) and the molecular momentum exchange

16 Fluid Mechanics and Machinery

between fluid layers and as the flow occurs, these effects appear as shearing stresses between the moving layers of a fluid. Hence, viscosity is a property of a fluid that determines the amount of this resistance to shearing stresses.

Viscosity may be defined in different ways. For example, it is a measure of the internal fluid friction that causes resistance to flow or as a property of a fluid that offers resistance to the movement of one layer of fluid over another adjacent layer of the fluid or as a property of a fluid that determines its resistance to shearing stresses.

Newton's law of viscosity states that for a given rate of angular deformation of fluid, the shear stress is directly proportional to the viscosity. The shear stress or shear resistance per unit area to a moving fluid is proportional to the velocity gradient in a direction normal to the area under consideration, in the same way as the stress in elastic solid is related to the strain component.

$$\tau = \frac{F}{A} = \alpha \frac{\partial u}{\partial y} \tag{1.16}$$

or

$$\tau = \mu \frac{\partial u}{\partial y} \tag{1.17}$$

where $\mu(\text{mu})$, the constant of proportionality in Eqn (1.17), is called dynamic viscosity or absolute viscosity of the fluid. The relationship given by Eqn (1.17) is called newton's law of viscosity. Any fluid that obeys this law is called Newtonian fluid. The velocity gradient $\frac{\partial u}{\partial y}$ may be visualized as the rate at which one layer moves relative to an adjacent layer. Depending on the sign of velocity gradient, the direction of action of shear force changes. If the shear force acts in the direction of velocity, it is considered positive. It is evident from Eqn (1.17) that $\tau = 0$ when $\frac{\partial u}{\partial y} = 0$. Hence, there would not be any shear force in uniform flow or at the symmetry of a flow. The velocity gradient cannot be infinite as it is not physically possible to have an infinite value for the shear stress. Hence, the value of velocity gradient should change continuously without any jump throughout the flow region includ-

ing the boundary.

An ideal fluid has no viscosity. There is no fluid that can be classified as a perfectly ideal fluid. However, the fluids with very little viscosity are sometimes considered as 'ideal fluids'. In general, the viscosity of a fluid depends on both the temperature and pressure (Fig. 1.8), although the dependence on pressure is rather weak. For liquids, both dynamic and kinematic viscosities are practically independent of pressure and any small variation with pressure is usually ignored, except at extremely high pressures.

Viscosity of liquids varies inversely with temperature (because in liquids the

Fig. 1.8 The viscosity of liquids decreases and the viscosity of gases increases with temperature

shear stress due to intermolecular cohesion decreases with the increase in temperature), while viscosity of gases varies directly with temperature. (In gases, the intermolecular cohesion is negligible and the shear stress is due to the exchange of momentum of the molecules, normal to the direction of motion. The molecular activity increases with temperature and hence the shear stress and also the viscosity of gases will increase with the increase in temperature.)

The kinetic theory of gases predicts the viscosity of gases to be proportional to the square root of the temperature, i.e.,

$$\mu_{\rm gas} \propto \sqrt{T}$$

This prediction is confirmed from the practical observations; however, some gases need correction factors because of some deviations.

The relation between viscosity and temperature for liquids and gases are as follows.

Sutherland correlation (from the US standard atmosphere)

1. For gases

$$\mu = \frac{\alpha T^{1/2}}{1 + \frac{\beta}{T}} \tag{1.18}$$

where *T* is the absolute temperature, and α and β are experimentally determined constants. For air, values of these two constants are

 $\alpha = 1.458 \times 10^{-6}$ kg/(ms K^{1/2}) and $\beta = 110.4$ K at atmospheric conditions **2**. For liquids, the viscosity is approximated as

$$\mu = \alpha 10^{\beta/T - \gamma} \tag{1.19}$$

where again *T* is absolute temperature and α , β , and γ are experimentally determined constants. For water, $\alpha = 2.414 \times 10^{-5} \text{ Ns/m}^2$, $\beta = 247.8 \text{ K}$, and $\gamma = 140 \text{ K}$, results in less than 2.5% error in viscosity in the temperature range of 0°C to 370°C (Touloukian et al., 1975)

Other relations are given below.

1. For liquids

$$\mu = \mu_0 \left(\frac{1}{1 + \xi t + \zeta t^2} \right) \text{poise}$$
(1.20)

where μ = viscosity of liquid at *t*°C in poise, μ_0 = viscosity of liquid at 0°C in poise, and ξ and ζ are constants for the liquid.

For water, $\mu_0 = 1.79 \times 10^{-3}$ poise, $\xi = 0.03368$, $\zeta = 0.000221$

Once again from the above equation, one can infer that with the increase of temperature the viscosity of liquids decreases.

2. For gases

$$\mu = \mu_0 + \xi t - \zeta t^2 \text{ poise} \tag{1.21}$$

where for air $\psi_0 = 0.000017$, $\xi = 0.000000056$, and $\zeta = 0.1189 \times 10^{-9}$

Once again, from Eqn (1.21), one can infer that with the increase in temperature the viscosity of gases increases.

3. Helmholtz suggested the following expression for water in CGS units:

$$\mu = \frac{0.01776}{1 + 0.03368T + 0.000221T^2} \text{ poise}$$
(1.22)

where T is the temperature in $^{\circ}$ C.

To quantify viscosity for mathematical manipulation, consider a fluid confined between two parallel plates as shown in Fig. 1.9. The upper plate is moving at a velocity u, and the distance between the plates is denoted by y. The layer of fluid in contact with the upper (moving) plate will move with the same velocity as the plate (i.e., u), whereas the layer in contact with the lower (fixed) plate will have a zero velocity.

If a linear velocity gradient is assumed, as indicated in Fig. 1.9, and if the shearing stress in the fluid is assumed to be proportional to the rate of change of velocity (newton's law of viscosity), the shearing stress (Fig. 1.10) may be expressed as follows:

$$\tau = \mu \frac{U}{y} \tag{1.23}$$

Dynamic and kinematic viscosity

The proportionality factor for the viscous fluid, as given in Eqn (1.23), is called dynamic or absolute viscosity. Therefore,

$$\mu = \frac{\tau}{\frac{du}{dy}} \frac{\frac{N}{m^2}}{\frac{m}{s} \times \frac{1}{m}} = \frac{Ns}{m^2} \text{ (ps)} \qquad (1.24)$$

Note μ for water = 1.75×10^{-3} Ns/m²

The unit of viscosity in CGS is called poise [one poise = (1/10) Ns/m²].

Fig. 1.10 The rate of deformation of a Newtonian fluid is proportional to the shear stress

Kinematic viscosity It is defined as the ratio between the dynamic viscosity and density of fluid.

$$\nu = \frac{\mu}{\rho} \; \frac{\mathrm{m}^2}{\mathrm{s}} \tag{1.25a}$$

Note v for water: 1.75×10^{-6} m²/s

The unit of kinematic viscosity in CGS is called stoke.

Thus, 1 stoke = $10^{-4} \text{ m}^2/\text{s}$

As the water temperature range of the data is considerable, one requires relationship for kinematic viscosity as a function of temperature T. Streeter and Wylie (1979) have given an equation through which one can determine the kinematic viscosity.

$$\nu = 1.792 \times 10^{-6} \left[1 + \left(\frac{T}{25} \right)^{1.165} \right]^{-1}$$
(1.25b)

Here v is in m²/s and T = water temperature in °C. The maximum percentage of error in using Eqn (1.25b) is 2.2%.

I.6.1 No-Slip Condition of Viscous Fluids

When a viscous fluid flows over a solid surface, the fluid elements adjacent to the surface attain the velocity of the surface. In other words, the relative velocity between the solid surface and adjacent fluid particles is zero. This phenomenon has been established through experimental observations and is known as the *no-slip* conditions. Thus, the fluid elements in contact with a stationary surface have zero velocity. This behavior of no-slip at the solid surface should not be confused with wetting of surfaces by the fluids. For example, mercury flowing in glass tube will not wet the surface, but will have zero velocity at the wall of the tube. The wetting results due to surface tension, whereas, the no-slip condition is a consequence of fluid viscosity. Table 1.13 shows the variation of dynamic viscosity and kinematic

Temperature (°C)	Dynamic viscosity (Ns/m²)	Kinematic viscosity (m²/s)
0	1.75 × 10 ⁻³	1.75 × 10⁻ ⁶
10	1.30 × 10 ⁻³	1.30 × 10 ⁻⁶
20	1.02 × 10 ⁻³	1.02 × 10 ⁻⁶
30	8.0 × 10 ⁻⁴	8.03 × 10 ⁻⁷
40	6.51 × 10 ⁻⁴	6.56 × 10 ⁻⁷
50	5.41 × 10 ⁻⁴	5.48 × 10 ⁻⁷
60	4.6 × 10 ⁻⁴	4.67 × 10 ^{−7}
70	4.02 × 10 ⁻⁴	4.11 × 10 ⁻⁷
80	3.5 × 10 ⁻⁴	3.6 × 10 ⁻⁷
90	3.11 × 10 ⁻⁴	3.22 × 10 ^{−7}
100	2.82 × 10 ⁻⁴	2.94 × 10 ⁻⁷

 Table 1.13
 Variation of dynamic viscosity and kinematic viscosity with respect to temperature

Fluids	Dynamic viscosity (Ns/m²)	Kinematic viscosity (m ² /s)
	Liquids	
Water	1.00×10^{-3}	1.00 × 10 ⁻⁶
Sea water	1.07 × 10 ⁻³	1.04 × 10 ⁻⁶
Gasoline	2.92 × 10 ⁻⁴	4.29 × 10 ⁻⁷
Kerosene	1.92 × 10 ⁻³	2.39 × 10 ⁻⁴
Glycerin	1.49 × 10 ⁻³	1.18 × 10 ⁻³
Mercury	1.56 × 10 ⁻³	1.15 × 10 ⁻⁷
Castor oil	9.80 × 10 ⁻¹	1.02×10^{-3}
	Gases	
Air	1.80 × 10 ⁵	1.494 × 10 ⁵
Carbon dioxide	1.48 × 10 ⁵	0.804 × 10 ⁵
Hydrogen	0.90 × 10 ⁵	10.714 × 10 ⁵
Nitrogen	1.76 × 10 ⁵	1.517 × 10 ⁵
Methane	1.34 × 10 ⁵	2.00 × 10 ⁵
Oxygen	2.00 × 10 ⁵	1.504 × 10 ⁵
Water vapor	1.01 × 10 ⁵	1.352 × 10 ⁵

 Table 1.14
 Values of dynamic viscosity and kinematic viscosity for some common fluids at 20°C and 1 atmospheric pressure

viscosity with respect to temperature and Table 1.14 gives the values for some common fluids at 20°C.

Specific viscosity It is the ratio of viscosity of fluid to the viscosity of water at 20°C.

Example 1.9 From a table of the properties of liquids it was found that at 20°C carbon tetrachloride had a dynamic viscosity of 9.67×10^{-4} Pas and a kinematic viscosity of 6.08×10^{-7} m²/s. Calculate its specific gravity and weight density.

Solution Given: $\mu = 9.67 \times 10^{-4} \text{ Ns/m}^2$, $\nu = 6.08 \times 10^{-7} \text{ m}^2/\text{s}$ $\rho = \frac{\mu}{\nu} = 1590.46 \text{ kg/m}^3$ $\gamma = \rho \times g = 1590.46 \times 9.81 = 15.602 \text{ kN/m}^3$ (Ans) $S = \frac{\gamma_{\text{liquid}}}{\gamma_{\text{water}}} = 1.596$ (Ans) **Example 1.10** A volume of 3.2 m³ of certain oil weighs 27.5 kN. Calculate its mass density, weight density, specific volume, and specific gravity. If kinematic viscosity of the oil is 7×10^{-3} stokes, what would be its dynamic viscosity in centipoises?

Solution Given $V = 3.2 \text{ m}^3$, W = 27.5 kN, and $\nu = 7 \times 10^{-3}$ stokes *Note* 1 stoke = 10^{-4} m²/s

$$\gamma = \frac{W}{V} = 8.59 \text{ kN/m}^3 \text{ (Ans)}$$

$$\rho = \frac{\gamma}{g} = 876.01 \text{ kg/m}^3 \text{ (Ans)}$$

$$V_s = \frac{1}{\rho} = 1.14 \times 10^{-3} \text{ m}^3/\text{kg} \text{ (Ans)}$$

$$S = \frac{\gamma_{\text{oil}}}{\gamma_{\text{water}}} = 0.87 \text{ (Ans)}$$

$$\mu = \nu \times \rho = 6.132 \text{ centipoise} \text{ (Ans)}$$

Example 1.11 Glycerin has a density of 1260 kg/m³ and a kinematic viscosity of 0.00183 m^2/s . What shear stress is required to deform this fluid at a strain rate of $10^{4}/s$?

Solution Given $\rho = 1260 \text{ kg/m}^3$ $\nu = 0.00183 \text{ m}^2/\text{s}$ $\frac{du}{dv} = 10^4 \,\mathrm{s}^{-1}$ Therefore, $\tau = \nu \rho \frac{du}{dy} = 1260 \times 0.00183 \times 10^4 = 23.058 \text{ kPa}$ (Ans)

Example 1.12 A liquid has a specific gravity of 1.9 and a kinematic viscosity of 6 stokes. What is its dynamic viscosity?

Solution Given S = 1.9, kinematic viscosity = 6 stokes = 6×10^{-4} m²/s $\rho_{\text{liquid}} = S \times \rho_{\text{water}} = 1.9 \times 1000 = 1900 \text{ kg/m}^3$

But, $\nu = \frac{\mu}{\rho}$ Therefore, $\mu = 1900 \times 6 \times 10^{-4} = 1.14 \text{ Ns/m}^2$ (Ans)

Example 1.13 The velocity distribution of flow over a plate is parabolic, with vertex 0.3 m from the plate (Fig. 1.11), where the velocity is 1.8 m/s. If the viscosity of the fluid is 0.9 N s/m², find the velocity gradients and shear stresses at distances 0 m, 0.15 m, and 0.3 m from the plate.

Solution The equation for velocity profile is given by

u

$$= ly^2 + my + n \tag{1.26}$$

where *l*, *m*, and *n* are constants.

Applying the boundary conditions to Eqn (1.26), we get

At y = 0; u = 0; therefore, Eqn (1.26) becomes, 0 = 0 + 0 + n or n = 0

At y = 0.3 m, du/dy = 0; therefore, du/dy = 2 ly+m

$$0 = 2 \times 1 \times 0.3 + m \tag{1.27}$$

At y = 0.3 m, u = 1.8 m/s; therefore, **Fig. 1.11**

$$1.8 = 1 \times 0.3^2 + m \tag{1.28}$$

Solving Eqns (1.27) and (1.28), we get

$$l = -20, m = 12$$

Therefore, the velocity profile will be

$$u = -20y^2 + 12y$$
$$\frac{du}{dy} = -40y + 12$$

and

To find the velocity gradient,

$$\frac{du}{dy}\Big|_{y=0} = 12 \text{ s}^{-1} \quad (Ans)$$
$$\frac{du}{dy}\Big|_{y=0.15} = 6 \text{ s}^{-1} \quad (Ans)$$
$$\frac{du}{dy}\Big|_{y=0.3} = 0 \text{ s}^{-1} \quad (Ans)$$

To find the shearing stress,

$$\tau |_{y=0} = \mu \frac{du}{dy} |_{y=0}$$

$$\tau |_{y=0} = 0.9 \times 12 = 10.8 \text{ N/m}^2 \quad (Ans)$$

$$\tau |_{y=0.15} = 0.9 \times 6 = 5.4 \text{ N/m}^2 \quad (Ans)$$

$$\tau |_{y=0.3} = 0.9 \times 0 = 0 \quad (Ans)$$

Example 1.14 The velocity (v) at radius r in a pipe of radius r_0 is given in terms of center line velocity (v_c) for laminar flow as

$$\frac{v}{v_c} = 1 - \left[\frac{r}{r_0}\right]^2$$

If the centerline velocity in a pipe of 1 m diameter is 6 m/s, and the velocity is 0.002 Ns/m², draw the velocity and shearing stress profile (Figures 1.12 and 1.13) for a cross section. $\frac{v}{v_c} = 1 - \left\{\frac{r}{r_0}\right\}^2$

Solution Given

or

 $v = 6 \left[1 - \left\{ \frac{r}{0.5} \right\}^2 \right]$

Therefore,

 $v = 6 - 24r^2$, which gives velocity profile.

$$\frac{dv}{dr} = -24 \times 2r = -48r$$

24 Fluid Mechanics and Machinery

$$\tau = -\mu \frac{dv}{dr} \quad \text{because } \frac{du}{dy} = -\frac{dv}{dr} = -0.002(-48r)$$

= 0.096r, which gives shearing stress profile.

Table 1.15 gives computed values for velocity profile and shear stress profile.

Table 1.15 For Example 1.14

R	v	t	Remarks
0	6	0	Centerline velocity
0.1	5.76	0.0096	
0.2	5.04	0.0192	
0.3	3.84	0.0283	
0.4	2.16	0.0384	
0.5	0	0.048	Boundary

Example 1.15 A fluid of absolute viscosity 8 poise flows past a flat plate and has a velocity 1 m/s at the vertex, which is at 0.2 m from the plate surface. Make calculations for the velocity gradients and shear stress at points 0.05, 0.1, and

0.15 m from the boundary. Assume (a) a straight-line velocity distribution and(b) a parabolic distribution.

Solution (a) For a straight-line velocity distribution, the velocity gradient (Table 1.16 and Fig. 1.14) at the boundary, that is, at y = 0, is

$$\frac{du}{dy} = \frac{100 - 0}{20 - 0} = 5 \text{ s}^{-1}$$
$$\tau = \mu \frac{du}{dy} = 0.8 \times 5 = 4 \text{ N/m}^2$$

(b) The parabolic velocity distribution can be prescribed by the relation

$$u = ly^2 + my + n$$

and

Applying boundary conditions, we get

 $\frac{du}{dv} = 2ly + m$

u = 0 at y = 0, n = 0; u = 1 m/s at y = 0.2

Now, we get l = -0.25 and m = 10

Table 1.16	Velocity gradient and	
shear stre	ess values	
Location Velocity Shear		Shear
	gradient	stress

	0	
Y = 0	10	8
Y = 0.05	7.5	6
Y = 0.1	5.0	4
Y = 0.15	2.5	2

Fig. 1.14 Velocity distribution for Example 1.15

= 1 m/s at
$$y = 0.2$$
 m; $\frac{du}{dy} = 0$ at $y = 0.02$ m

Therefore,
$$u = -0.25y^2 + 10y$$
 and $\frac{du}{dy} = -0.5y + 10$

Example 1.16 Air at 20°C forms a boundary layer near a solid wall of sine wave-shaped velocity profile $[v = v_{max} \sin(\pi y/2\delta)]$. The boundary layer thickness is 6 mm and the peak velocity is 10 m/s. Compute the shear stress in the boundary layer at y equal to (a) 0, (b) 3 mm, and (c) 6 mm. Consider the dynamic viscosity of air as 1.81×10^{-5} . 10 m/s

Solution Shear stress is given by $\tau = \mu \frac{dv}{dv}$,

Given

so that

Example 1.17 A large plate moves with a speed U over a stationary plate on a layer of oil as shown in Fig. 1.15. If the velocity profile is that of a parabola ($u^2 = ay$), with the oil at the plates having the same velocity as the plates, what is the stress on the moving plate from the oil? If a linear profile is assumed, what is the shear stress on the upper plate?

 $U^2 = ad$

 $a = \frac{U^2}{I}$

For a parabolic profile, $u^2 = ay$, where y = d, u = U. Solution

At v = 6 mm, $\tau = 0$ (Ans)

Thus.

Therefore,

Fig. 1.16 Velocity distribution for Example 1.17

26 Fluid Mechanics and Machinery

Therefore.

$$u^2 = \frac{U^2}{d} \times y = U^2 \left[\frac{y}{d}\right]$$

or

$$u = U \sqrt{\frac{y}{d}}$$

$$\frac{du}{dy} = \left[U \left\{ \frac{1}{\sqrt{d}} \right\} \left\{ \frac{1}{2} y^{-1/2} \right\} \right]$$

$$\tau = \mu \frac{du}{dy} = \mu \left[U \left\{ \frac{1}{\sqrt{d}} \right\} \left\{ \frac{1}{2} y^{-1/2} \right\} \right]$$

For y = d,

$$\tau = \frac{\mu U}{2d} \quad (Ans)$$

For a linear profile,

$$\frac{du}{dy} = \frac{U}{d}$$

Therefore.

$$\tau = \mu \frac{U}{d} \quad (Ans)$$

Example 1.18 Water is moving through a pipe. The velocity profile at some section is shown in Fig. 1.17 and is given mathematically as

$$u = \frac{\beta}{4\mu} \left[\frac{d^2}{4} - r^2 \right]$$

where u = velocity of water at any position r, $\beta =$ a constant, $\mu =$ viscosity of water, d = pipe diameter, and r = radial distance from centerline. What is the shear stress at the wall of the pipe due to the water? What is the shear stress at a position r = d/4? If the given profile persists for a distance L along the pipe, what drag is induced on the pipe by the water in the direction of flow over this distance?

Solution Given, velocity profile as $u = \left[\frac{\beta}{4\mu}\right] \left[\frac{d^2}{4} - r^2\right]$

$$\frac{du}{dr} = \left[\frac{\beta}{4\mu}\right](-2r) = \frac{-2\beta r}{4\mu}$$

So.

Velocity profile

Fig. 1.17 Velocity distribution for Example 1.18

Fundamentals of Fluid Mechanics 27

Shear stress is given by At the wall r = d/2. Hence $\tau_{wall} = \frac{-2\beta \left(\frac{d}{2}\right)}{4} = -\frac{\beta d}{4}$ (Ans) At r = d/4, $\tau_{r=d/4} = -\frac{\beta d}{8}$ (Ans) Drag = $(\tau_{wall})(area) = (\beta d/4)(\pi dL) = (\beta d^2 \pi L)/4$ (Ans)

Example 1.19 A plate weighing 150 N and measuring $0.8 \text{ m} \times 0.8 \text{ m}$ slides down an inclined plane over an oil film of 1.2 mm thickness. For an inclination of 30° and a velocity of 0.2 m/s, compute viscosity of the fluid.

Solution We have from newton's law of viscosity $\tau = \mu \frac{du}{dy}$

But $\tau = \frac{\text{force}}{\text{area}} = 150 \sin \frac{30^{\circ}}{0.8 \times 0.8} = 117.19 \text{ N/m}^2$

Fig. 1.18

Rate of deformation, $du/dy = (0.2 - 0)/0.12 = 166.67/s^{1}$

Therefore,
$$\mu = \frac{\tau}{\frac{du}{dy}} = 0.7 \text{ Ns/m}^2$$
 (Ans)

Example 1.20 The space between two parallel plates 5 mm apart is filled with crude oil (Fig. 1.19). A force of 2 N is required to drag the upper plate at a constant

velocity of 0.8 m/s. The lower plate is stationary. The area of the upper plate is 0.09 m^2 . Determine the dynamic viscosity and kinematic viscosity of the oil, if the specific gravity of the oil is 0.9.

Solution We have from newton's law of viscosity $\tau = \mu \frac{du}{dv}$

28 Fluid Mechanics and Machinery

$$F = \tau A = \left\{ \mu \frac{du}{dy} \right\} A$$

$$2 = \mu \times \frac{0.8}{5 \times 10^{-3}} \times 0.09$$

$$\mu = 0.139 \text{ Ns/m}^2 \quad (Ans)$$

$$\nu = \frac{\mu}{\rho} = \frac{0.139}{900} = 1.54 \times 10^{-4} \text{ m}^2\text{/s} \quad (Ans)$$

Example 1.21 A flat plate weighing 0.45 kN has an area of 0.1 m². It slides down an inclined plane at 30° to the horizontal (Fig. 1.20) at a constant speed of 3 m/s. If the inclined plane is lubricated with an oil of viscosity 0.1 Ns/m², find the thickness of the film.

Solution We know from newton's law of viscosity,

$$\tau = \mu \frac{du}{dy}$$

Here, out of 0.45 kN (450 N), only tangential component (450 × sin 30°) is shearing force. Therefore, shear stress will be equal to $450 \times \sin 30^{\circ}/0.1$.

$$\frac{450 \times \sin 30^{\circ}}{0.1} = \left(0.1 \times \frac{3}{dy}\right)$$

Therefore,

$$dy = 0.133 \,\mathrm{mm}$$
 (Ans)

Example 1.22 A block weighing 1 kN and having dimensions 200 mm on an edge is allowed to slide down and incline on a film of oil having a thickness of 0.005 mm, as shown in Fig. 1.21. If we use a linear velocity profile in the oil, what is the terminal speed of the block? The viscosity of the oil is 7×10^{-3} Ns/m².

Fig. 1.21

Solution From newton's law of viscosity, we have

$$\tau = \mu \frac{du}{dy} = 7 \times 10^{-3} \left\{ \frac{\nu_T}{\frac{0.005}{1000}} \right\} = 1400\nu_T$$
$$F_f = \tau A = \{1400\nu_T\} \left\{ \frac{200}{1000} \right\}^2 = 56.0\nu_T$$

At the terminal condition, equilibrium occurs.

Hence, $1000 \times \sin 30^\circ = 56.0 v_T$ or $v_T = 8.93$ m/s (Ans)

Example 1.23 As shown in Fig. 1.21, if the fluid is glycerin at 20°C and the width between the plates is 6 mm, what shear stress is required to move the upper plate at 2.5 m/s? What is the Reynolds number, if d is taken to be the distance between the plates (Fig. 1.22)?

Fig. 1.22

Solution We know from newton's law of viscosity

$$\tau = \mu \frac{du}{dy}$$

At
$$y = d$$
, $\tau = \mu \frac{du}{d(d)} = 1.49 \frac{2.5}{\frac{6}{1000}} = 621 \text{ N/m}^2$ (Ans)
 $N_R = \frac{\rho du}{\mu} = 1258 \times \frac{6}{1000} \times \frac{2.5}{1.49} = 12.7$ (Ans)

Example 1.24 A circular disc of diameter *D* is rotated in a liquid of viscosity μ at a small distance Δh from a fixed surface (Fig. 1.23). Derive an expression for the torque *T*, necessary to maintain an angular velocity ω . Neglect the centrifugal effect.

Solution The velocity of the bottom of the disc is a function of the radius and so is the rate of deformation and shear stress.

Shear stress at any radius r is given by

$$\tau = \mu \frac{du}{dy} = \mu \frac{\omega r}{\Delta h}$$

Fig. 1.23

© Oxford University Press

Consider a ring of radius r and width dr. The shear forces in the ring is given by

$$\Delta F = \tau \times 2\pi r \times dr = \mu \frac{\omega r}{\Delta h} \times 2\pi r \times dr = \frac{2\pi\mu\omega}{\Delta h} \times r^2 dr$$

The differential torque, $\Delta T = \Delta F \times r = \frac{2\pi\mu\omega}{\Delta h} \times r^2 dr \times r = \frac{2\pi\mu\omega}{\Delta h} \times r^3 dr$

Integrating, we get the total torque.

$$T = \int_{r=0}^{r=\theta/2} \frac{2\pi\mu\omega}{\Delta h} \times r^3 dr = \frac{\pi\mu\omega D^4}{32\Delta h} \operatorname{Nm} \quad (Ans)$$

Example 1.25 A solid cone of radius r_0 and vertex angle 2θ is to rotate at an angular velocity ω (Fig. 1.24). An oil of viscosity μ and thickness *h* fills the gap between the cone and the housing. Determine the torque *T* to rotate the cone.

Solution Shear stress on the inclined wall, $\tau = \mu \times \frac{du}{dy} = \mu \times \frac{V}{h} = \mu \frac{\omega r}{h}$

Considering an elemental area, $2\pi r \times \frac{dr}{\sin \theta} = dA$

Differential torque, $dT = rdF = r(\tau 2\pi r)\frac{dr}{\sin\theta}$ $= r\left[\mu\frac{\omega r}{h} \times 2\pi r \times \frac{dr}{\sin\theta}\right] = \mu\frac{2\pi\omega}{h}\frac{1}{\sin\theta}r^3dr$ Torque *T* is given by $T = \int_0^{r_0} dT = \frac{2\pi\omega\mu}{h\sin\theta} \times \int_0^{r_0} r^3dr$ $T = \frac{\pi\omega\mu}{2h\sin\theta}r_0^4$ (Ans)

Example 1.26 Inside a 60-mm diameter cylinder a piston of 59 mm diameter rotates concentrically. Both the cylinder and piston are 80 mm long (Fig. 1.25). If the

Fig. 1.25 Longitudinal section of piston and cylinder

space between the cylinder and piston is filled with oil of viscosity of 0.3 Ns/m^2 and a torque of 1.5 Nm is applied, find the rpm of the piston and the power required.

Solution Given: D = 60 mm, d = 59 mm, L = 80 mm, dy = 0.0005 m, and torque T = 1.5 Nm

We know that

Torque = shear force $\times d/2$

or $1.5 = F \times 0.059/2$

Therefore, F = 50.85 N

But

 $F = \tau \times \operatorname{area} = \tau \times \pi dL$

whereas

 $\tau = \mu \frac{du}{dy}$

 $u = \frac{\pi dN}{60}$

Therefore,

or

or

 $\tau = 0.3 \times \frac{u}{0.0005}$ $F = \left[0.3 \times \frac{u}{0.0005} \right] \times \pi \times 0.059 \times 0.08 \times \frac{0.059}{2}$ u = 5.72 m/s

But

From this, we get N = 1849.5 rpm

But

$$p = T \times \frac{2\pi N}{60} = 1.5 \times 2 \times \pi \times \frac{1849.5}{60} = 290.5 W$$

Example 1.27 A cylinder of 0.12 m radius rotates concentrically inside a fixed hollow cylinder of 0.13 m radius. Both the cylinders are 0.3 m long. Determine the viscosity of the fluid that fills the space between the cylinders if a torque of 0.88 Nm is required to maintain an angular velocity of 2π rad/s.

Solution The torque applied = the resisting torque by the fluid = shear stress × surface area × torque

Hence, at any radial location r from the axis of rotation

$$0.88 = \tau \times (2\pi r \times 0.3)r$$
$$\tau = \frac{0.467}{r^2}$$

 $\tau = \mu \frac{d\nu}{d\nu}$

or

We have

Therefore,
$$\frac{d\nu}{dy} = \frac{\tau}{\mu} = \frac{0.467}{\mu r^2}$$

32 Fluid Mechanics and Machinery

Rearranging the above expression and substituting (-dr) in place of dy (the minus sign indicates that r, the radial distance, decreases as v increases), we obtain

$$\int_{v_{\text{outer}}}^{v_{\text{inner}}} dv \frac{0.467}{\mu} \int_{0.13}^{0.12} -\frac{dr}{r^2}$$

Hence,

$$(v_{\text{inner}} - v_{\text{outer}}) = \frac{0.467}{\mu} \left\{ \frac{1}{r} \right\}_{0.13}^{0.12}$$
$$v_{\text{inner}} = 0.754 \text{ m/s} \quad (2 \times \pi \times 0.12)$$
$$v_{\text{outer}} = 0 \text{ m/s} \quad (\text{fixed})$$

But

or

Therefore, substituting the above values, we get

$$(0.754 - 0) = \frac{0.467}{\mu} \left[\frac{1}{0.12} - \frac{1}{0.13} \right]$$

$$\mu = 0.397 \text{ Pas} \quad (Ans)$$

Example 1.28 A dash pot 12 cm in diameter and 15 cm long slides vertically down into an annulus of 12.05 cm diameter cylinder (Fig. 1.26). The oil that fills the annular space has a viscosity of 1 poise. Find the speed with which the piston slides down if load of the piston is 15 N.

Solution Since the space between the dash pot and the cylinder is very small, that is, the oil film is thin, we can assume that du/dy = u/t, where *u* is the velocity of piston and *t* is the oil film thickness.

Shear stress, $\tau = \mu \frac{du}{dy} = \mu \left\{ \frac{u}{t} \right\}$

Shear or viscous force = $\tau \times \text{area} = \mu \frac{u}{t} (2\pi rl)$

Here, r = 6 cm = 0.06 m, $\mu = 0.1 \text{ Ns/m}^2$, t = 0.00025 m, viscous force =15 N.

Therefore, u = 0.663 m/s (Ans)

Example 1.29 A 1.5 cm wide gap between two vertical plane surfaces is filled with an oil of specific gravity 0.9 and dynamic viscosity 2.0 Ns/m². A metal plate $1.0 \text{ m} \times 1.0 \text{ m} \times 0.1 \text{ cm}$ thick and weighing 20 N is placed midway in the gap (Fig. 1.27). Find the force required if the plate is to be lifted up with a constant velocity of 0.1 m/s.

Fig. 1.27

© Oxford University Press

Solution The shear stresses on two sides of the plate are as given

$$\tau_1 = \mu \frac{du}{dy} = \mu \frac{v}{t_1}$$
 and $\tau_2 = \mu \frac{v}{t_2}$

Drag force or viscous resistance against the motion of the plate is given by

$$F = \left[\mu \frac{\nu}{t_1} + \mu \frac{\nu}{t_2}\right] A$$
$$= \mu A \nu \left[\frac{1}{t_1} + \frac{1}{t_2}\right]$$

Since the plate is midway in the gap, $t_1 = t_2$. Therefore, $F = 2 \frac{\mu A v}{t}$

$$t = \frac{1.5 - 0.1}{2} = 0.7 \,\mathrm{cm} \,\mathrm{or} \,0.007 \,\mathrm{m}$$

But

$$F = \frac{2 \times 2.0 \times 1.0 \times 1.0 \times 0.1}{0.007} = 57.14$$

Therefore.

Upthrust or buoyant force on the plate = specific weight \times volume of oil displaced $= 0.9 \times 9810 \times 1.0 \times 1.0 \times 0.001 = 8.829$ N

N

Effective weight of the plate = 20 - 8.829 = 11.171 N

Therefore, the total force required to lift the plate at the given velocity

$$= 57.14 + 8.829 = 65.97 \,\mathrm{N}$$
 (Ans)

Example 1.30 Two large fixed parallel planes are 12 mm apart. The space between the surfaces is filled with an oil of viscosity 0.9 N s/m². A flat thin plate 0.2 m² area moves through the oil at a velocity of 0.25 m/s.

Calculate the drag force

- 1. when the plate is equidistant from both the planes (Fig. 1.28)
- 2. when the thin plate is at a distance of 3.5 mm from one of the plane surfaces (Fig. 1.29).

- **Solution** Distance between the fixed parallel planes = 12 mm = 0.012 mArea of thin plate $A = 0.2 \text{ m}^2$, velocity of plate = 0.25 m/s, viscosity of oil $\mu = 0.9 \text{ Ns/m}^2$, and drag force F = ?
 - 1. When the plate is equidistance from both the planes

$$\tau_{1} = \mu \frac{du}{dy}|_{1} = 0.9 \times \frac{0.25}{0.006} = 37.5 \text{ N/m}^{2}$$

$$F_{1} = \tau_{1} \times A = 37.5 \times 0.2 = 7.5 \text{ N}$$

$$\tau_{2} = \mu \frac{du}{dy}|_{2} = 37.5 \text{ N/m}^{2} \text{ and } F_{2} = 7.5 \text{ N}$$

$$F = 7.5 + 7.5 = 15 \text{ N} \quad (Ans)$$

2. When the plate is at 3.5 mm from one of the fixed plates

$$F_1 = \tau_1 A = \mu \frac{du}{dy} \Big|_1 A = 0.9 \times \frac{0.25}{0.0085} \times 0.2 = 5.29 \text{ N}$$

$$F_2 = \tau_2 A = \mu \frac{du}{dy} \Big|_2 A = 0.9 \times \frac{0.25}{0.0035} \times 0.2 = 12.857 \text{ N}$$

Total force, $F = F_1 + F_2 = 5.29 + 12.857 = 18.147 \text{ N}$ (Ans)

1.7 VAPOR PRESSURE OF LIQUIDS (P_v) AND CAVITATIONS

We will first explain vapor pressure.

I.7.I Vapor Pressure

All liquids and solids have a tendency to evaporate to a gaseous form, and all gases have a tendency to condense back into their original form (i.e., either liquid or solid). Liquids have a property of releasing their molecules into the space above their surface. The liquid is then said to be vaporized or evaporated. Evaporation occurs at the surface of the liquid. If the surface is exposed to the atmosphere, evaporation generally occurs continuously. If, however, the surface is within an enclosed space, evaporation will occur only until the air within the enclosed space becomes saturated with vapor. Pressure caused by vapor molecules within such

Table 1.18 Variation of vapor pres-

a closed space is called vapor pressure. Thus, vapor pressure is the pressure of a vapor in equilibrium with its non-vapor phase.

Vapor pressure increases with increase in temperature. At any given temperature, for a particular substance, there is a pressure at which the gas of that substance is in dynamic equilibrium with its liquid or solid forms. This is known as vapor pressure of the substance at that temperature.

The vapor pressures of some liquids at 20°C are given in Table 1.17 and the variation of water with respect to temperature is given in Table 1.18.

Equilibrium vapor pressure is an indication of a liquid's evaporation rate. It relates the tendency of molecules and atoms to escape from a liquid or a solid. A substance with a high vapor pressure at normal temperature is often referred to as a volatile substance. According to the Clausius–Clapeyron relation, the vapor pressure of any substance increases non-linearly with temperature (Fig. 1.30).

I.7.2 Boiling Point

T-1-1 1 17)/------

The boiling point of a liquid is the temperature at which the vapor pressure of the liquid equals the environmental pressure surrounding the liquid.

A liquid in vacuum environment has a lower boiling point than when it is at atmospheric pressure and a liquid in a high-pressure environment has a higher boiling point than when the liquid is at atmospheric pressure. In other words, all liquids may have many number of boiling points.

The normal boiling point (also called the atmospheric boiling point or the atmospheric pressure boiling point) of a liquid is the special case at which the vapor pressure of the liquid equals the ambient atmospheric pressure. At that temperature,

some liquid at 20°C		sure with respect to temperature		
Liquids	Vapor pressure (kN/m²)	Temperature (°C)	Vapor pressure (kPa)	
Water	2.34	0	0.611	
Sea water	2 34	10	1.23	
Sea water	2.37	20	2.34	
Carbon tetra- chloride	12.1	30	4.24	
Benzene	10.0	40	7.38	
	0.0000017	50	12.3	
Mercury	0.0000017	60	19.9	
Gasoline	55.0	70	31.2	
Kerosene	3.11	80	47.4	
Ammonia	910	90	70.1	
Glycerin	0.000014	100	101.3	

36 Fluid Mechanics and Machinery

the vapor pressure of the liquid becomes sufficient to overcome the atmospheric pressure and lift of the liquid to form bubbles inside the bulk of the liquid.

The heat of vaporization is the amount of heat required to convert or vaporize a saturated liquid (i.e., a liquid at its boiling point) into a vapor. Liquids may change to vapor at room temperatures below their boiling points through the process of evaporation.

Let the molecules impinging on the surface exert a partial pressure called vapor pressure (p_v) . And let this pressure of the liquid vapor combined with the pressure of other gases in the atmosphere make up the total atmospheric pressure (p_a) .

If $p_v < p_a$, then

Number of molecules leaving the surface > number of molecules re-entering the surface

That is, evaporation is taking place.

If $p_v > p_a$, then

Number of molecules leaving the surface < number of molecules re-entering the surface

That is, condensation is taking place.

If $p_v = p_a$, then

Number of molecules leaving the surface = number of molecules re-entering the surface

That is, boiling takes place, and for this equilibrium condition, p_v is called the saturation vapor pressure (SVP).

Thus, when the vapor pressure is equal to the atmospheric pressure or ambient pressure (in a closed vessel), boiling takes place. This pressure is a function of temperature. As the temperature increases, the vapor pressure also increases until the boiling point is reached for the ambient pressure. At sea level, water boils at 100°C and at high altitude (mountain peaks), where the atmospheric pressure is less, water boils at a temperature less than 100°C. When a liquid is confined in an enclosed vessel it may boil even at room temperature, if the ambient pressure is decreased to the magnitude of the vapor pressure of the liquid at that temperature.

Example 1.31 At what pressure in millibars will 40°C water boil?

Solution Vapor pressure at 40°C is 7.38 kN/m². Hence, water will boil at 7.38 kN/m² = 7380 N/m² = 73.8 mbar (*Ans*) (since 1 mbar = 100 N/m^2)

I.7.3 Cavitation

The SVP is of great practical use in fluid problems. If the pressure at any point in a fluid phenomenon approaches the vapor pressure, the liquid starts vaporizing. Vapor bubbles that are created in the region of low pressure are carried with the liquid to the region of high pressure. These bubbles collapse in the region of high pressure and explosion of bubbles takes place. This explosion causes damage to the walls of the conduit and also creates air pockets in the flow. The phenomenon is known as cavitation. Because of the destructive nature of cavitation, its occurrence in flow problems should be avoided. This is possible if the pressure at any point in the fluid phenomenon is not permitted to fall below the SVP. To avoid cavitations (cavity formation) in problems related to flow of water, the pressure is not permitted to fall below 2.5 m of water.

Example 1.32 At what pressure can cavitation be expected at the inlet of a pump that is handling water at 20° C?

Solution Cavitation occurs when the internal pressure drops to the vapor pressure. Vapor pressure of water at 20°C is 2.34 kN/m² and hence cavitation can be expected at that pressure.

1.8 BULK MODULUS (K) AND COMPRESSIBILITY (β)

We will first define bulk modulus of elasticity.

I.8.1 Bulk Modulus

Elasticity of fluids is measured in terms of bulk modulus of elasticity (K), which may be defined as the ratio of compressive stress to volumetric strain. This bulk modulus is analogous to the modulus of elasticity for solids. However, for fluids,

it is defined on a volume basis rather than in terms of familiar one-dimensional stress–strain relation for solid bodies.

Consider a cylinder fitted with piston as shown in Fig. 1.31.

Let \forall = volume of gas enclosed in the cylinder, p = pressure of gas when volume is \forall , which is also equal to P/A, where, A is the area of cross section of the cylinder.

Let the pressure be increased to p + dp, then the volume of gas decreases from \forall to $\forall - d\forall$.

Therefore, Increase in pressure = dp

Decrease in volume =
$$d\nabla$$

Volumetric strain =
$$-\frac{d\forall}{\forall}$$

Negative sign indicates decrease in volume with increase in pressure. Therefore, bulk modulus K is given by

$$K = \frac{dp}{-\frac{d\forall}{\forall}}$$
(1.29)

Steepening of the curve with increasing pressure shows that as fluids are compressed, it becomes increasingly difficult to compress further. In other words, the value of K increases with increase in pressure. The bulk modulus of elasticity K is not constant, but it increases with increase in pressure and further it decreases with increase in temperature.

At NTP (normal temperature and pressure),

$$K_{\text{water}} = 2.07 \times 10^6 \text{ kN/m}^2 \text{ and } K_{\text{air}} = 101.3 \text{ kN/m}^2$$

This indicates that air is about 20,000 times more compressible than water. With a decrease in the volume of a given mass, $m = \rho \forall$, will result in an increase in density. Equation (1.29) can also be expressed as

$$K = \frac{dp}{d\rho/\rho} \tag{1.30}$$

Fig. 1.31 Piston and cylinder experiment

When gases are compressed or expanded, the relationship between pressure and density depends on the nature of the process. If the compression or expansion takes place under constant temperature conditions (isothermal process), then

$$\frac{p}{\rho} = \text{constant}$$
 (1.31)

If the compression or expansion is frictionless and no heat is exchanged with the surroundings (isentropic process), then

$$\frac{p}{\rho^k} = \text{constant} \tag{1.32}$$

where *k* is the ratio of the specific heat at constant pressure c_p to the specific heat at constant volume c_v (that is, $k = c_p/c_v$). The two specific heats are related to the gas constant *R* through the equation $R = c_p - c_v$. Here *p* is the absolute pressure and the value of *k* for air =1.4.

I.8.2 Compressibility

Compressibility is nothing but reciprocal of modulus of elasticity k. That is,

$$\beta = \frac{1}{K} \tag{1.33}$$

The property by which fluids undergo a change in volume under the action of external pressure is known as compressibility. It decreases with an increase in pressure of fluid, as the volume modulus increases with the increase of pressure. The variation in the volume of water with the variation of pressure is so small that for all practical purposes it is neglected. Thus, the water is considered to be an incompressible liquid. However, in case of water flowing through pipes, when sudden or large change in pressure (e.g., water hammer) takes place, then the compressibility must be taken into account.

I.8.3 Speed of Sound

Another important consequence of the compressibility of fluids is that disturbances introduced at some point in the fluid propagate at a finite velocity. In certain situation, these small disturbances can propagate at a rate equal to the speed of sound c. The speed of sound is related to changes in pressure and density of the fluid medium through Eqn (1.34).

$$c = \sqrt{\frac{dp}{d\rho}} \tag{1.34}$$

or in terms of bulk modulus

$$c = \sqrt{\frac{K}{\rho}} \tag{1.35}$$

Since the disturbance is small, one can assume the process to be isentropic. For gases under isentropic process,

$$K = kp$$

$$c = \sqrt{\frac{kp}{\rho}} \tag{1.36}$$

or

$$c = \sqrt{kRT} \tag{1.37}$$

Thus, for ideal gases the speed of sound is proportional to the square root of the absolute temperature.

Example 1.33 A liquid compressed in a cylinder has a volume of 1000 cm^3 at 1 MN/m² and a volume of 995 cm³ at 2 MN/m³. What is the bulk modulus of elasticity?

Solution We have
$$K = -\frac{\Delta p}{\underline{\Delta \forall}} = -\frac{2-1}{(995-1000)/1000} = 200 \text{ MPa}$$
 (Ans)

Example 1.34 For K = 2.2 GPa for the bulk modulus of elasticity for water, what pressure is required in reducing its volume by 0.5%?

Solution

$$K = -\frac{\Delta p}{\Delta \forall / \forall}, \ 2.2 = -\frac{p_2 - 0}{-0.005}$$

 $p_2 = 0.0110 \text{ GPa} = 11.0 \text{ MPa}$ (Ans)

Example 1.35 When the pressure of liquid is increased from 3 MN/m^2 to 6.0 MN/m^2 , its volume is decreased by 0.1%. What is the bulk modulus of elasticity of the liquid?

Solution Given: Initial pressure = 3.0 MN/m^2 Final pressure = 6.0 MN/m^2 Increase in pressure = $6 - 3 = 3 \text{ MN/m}^2$ Decrease in volume = 0.1%

Therefore,

$$K = \frac{dp}{-d\forall /\forall} = \frac{3.0}{\frac{0.1}{100}} = 3.0 \times 10^9 \text{ N/m}^2 \quad (Ans)$$

Example 1.36 A high pressure steel container is filled with liquid at a pressure of 10 atm. The volume of the liquid is 1.23200 l. At a pressure of 25 atm, the volume of the liquid equals 1.23100 l. What is the average bulk modulus of the elasticity of the liquid over the given range of pressure, if the temperature after compression is allowed to return to the original temperature? What is the coefficient of compressibility?

Solution
$$K = \frac{dp}{-d\forall / \forall} = -\frac{(25-10)101.3}{(1.23100 - 1.23200)/1.23200} = 1872 \text{ MN/m}^2$$
 (Ans)
 $\beta = \frac{1}{K} = \frac{1}{1872} = 0.000534 \text{ m}^2/\text{MN}$ (Ans)

1.9 CAPILLARITY OR MENISCUS EFFECT

Capillarity is a phenomenon by which a liquid (depending upon its specific gravity) rises into a thin glass tube or below its general level, because of the combined effect of cohesion and adhesion. (Adhesion means an attraction between the molecules of a liquid and the molecules of a solid boundary in contact with the liquid. This property enables a liquid to stick to another body.)

Figure 1.32 shows the phenomenon of rising water in the tube of a smaller diameter.

Let d = diameter of the capillary tube, θ = angle of contact of the water surface, h = height of capillary rise, σ = surface tension force/unit length, and γ = weight density (ρg). For a length of πd , surface tension force = $\sigma \pi d$.

Equating the vertical component of surface tension force and weight of water, we get $\sigma(\pi \times d \times \cos \theta) = \frac{\pi}{4} \times d^2 \times h \times \gamma$

or

$$h = \frac{4\sigma\cos\theta}{\gamma d} \tag{1.38}$$

For water and glass combination, $\theta = 0$. Therefore,

$$h = \frac{4\sigma}{\gamma d} \tag{1.39}$$

Note The smaller the diameter of the capillary tube, the greater is the capillary rise or depression. At the same time, it should not be smaller than 8 mm and further it should not be more than 12 mm. Also, the capillary rise is usually measured to the bottom of the meniscus.

Fig. 1.32 Effect of capillarity in case of water

Fig. 1.33 Effect of capillarity in case of mercury

In case of mercury, there is a capillary depression as shown in Fig. 1.33. *Notes*

- 1. For wetting liquid (water) $\theta < \pi/2$; for pure water $\theta = 0$ (pure water in contact with clean glass); otherwise, $\theta = 25^{\circ}$ (slightly contaminated water)
- 2. For non-wetting liquid (mercury) $\theta > \pi/2$; for mercury θ varies between 130° and 150°

Example 1.37 Two parallel wide, clean, glass plates separated by a distance *d* of 1 mm are placed in water, as shown in Fig. 1.34. How far does the water rise due to the capillary action away from the ends of the plate? Take surface tension = 0.0730 N/m.

Solution Because the plates are clean, the angle of contact between water and glass is taken as zero, considering the free body diagram of unit width of the raised water, away from the ends.

Summing forces in the vertical directions gives

$$2 \times \sigma \times \frac{1}{1000} - \left(\frac{1}{1000}\right)^2 \times h \times \gamma = 0$$

or h = 0.0143 m or 14.3 mm

Fig. 1.35

Example 1.38 Calculate the capillary effect in millimeters in a glass tube of 3 mm in diameter, when immersed in water and mercury. The temperature of the liquid is 20°C and the values of surface tension of water and mercury at 20°C in contact with air are 0.0735 N/m and 0.51 N/m, respectively. The contact angle for water $\theta = 0^{\circ}$ and for mercury $\theta = 130^{\circ}$. Take specific weight of water at 20°C as equal to 9810 N/m³.

Solution We have capillary effect for water,

$$h = \frac{4 \times 0.0735 \times \cos(0)}{9810 \times 0.003} = 9.98 \text{ mm} \quad (Ans)$$

Capillary effect for mercury,

$$h = \frac{4 \times 0.051 \times \cos 130}{9810 \times 0.003} = -4.45 \,\mathrm{mm} \quad (Ans)$$

Example 1.39 A U-tube is made up of two capillaries of bores 1.0 mm and 2.2 mm, respectively. The tube is held vertically with zero contact angles. It is partially filled with liquid of surface tension 0.06 N/m. If the estimated difference in the level of two menisci is 15 mm, determine the mass density of the liquid.

Solution Given bores of capillaries: $d_1 = 1.0 \text{ mm} = 0.001 \text{ m}$ $d_2 = 2.2 \text{ mm} = 0.0022 \text{ m}$

Difference of level, $h_1 - h_2 = 15 \text{ mm} = 0.015 \text{ m}$

So, we have
$$h_1 = \frac{4\sigma\cos\theta}{\gamma d_1}$$
 and $h_2 = \frac{4\sigma\cos\theta}{\gamma d_2}$
Now, $h_1 - h_2 = \frac{4\sigma}{\gamma} \left[\frac{1}{d_1} - \frac{1}{d_2} \right]$

or

$$0.015 = \frac{4 \times 0.06}{\rho \times 9.81} \left[\frac{1}{0.001} - \frac{1}{0.0022} \right]$$

So,
$$\rho = 889.63 \text{ kg/m}^3$$
 (Ans)

Example 1.40 Develop a formula for the capillary rise of a fluid having surface tension σ and a contact angle θ between

- 1. two concentric glass tubes of radii r_0 and r_i (Fig. 1.36)
- 2. two vertical glass plates set parallel to each other and having a gap *t* between them (Fig. 1.37)

Solution

1. At equilibrium,

$$\gamma h \pi (r_o^2 - r_i^2) = \sigma \times \cos \theta \times 2\pi (r_o + r_i)$$

Fig. 1.37

$$h = \frac{2\sigma\cos\theta}{\gamma(r_o - r_i)} \quad (Ans)$$

2. We have
$$\gamma hbt = \sigma \cos \theta \times 2b$$

or $h = \frac{2\sigma \cos \theta}{\gamma t}$ (Ans)

Example 1.41 The glass tube in Fig. 1.38 is used to measure pressure p in the water tank. The diameter of the tube is 0.9 mm and water is at 30°C. After correcting for the surface tension, what is the true water height in the tube? What percentage of error is made at equilibrium, if no correction is computed?

Solution Height of water in the glass tube (capillary correction) is given by

Fig. 1.38 Water tank

$$h = \frac{2\sigma \cos\theta}{\rho gr} = \frac{2 \times 0.0712 \times \cos\theta}{1000 \times 9.81 \times 0.45} = 0.0322 \,\mathrm{m} \text{ or } 3.22 \,\mathrm{cm}$$

Therefore, true height of water in the tube = 15 - 3.22 = 11.78 cm (*Ans*) Neglecting capillary correction causes

$$\frac{3.22}{15} = 0.2146 \text{ or } 21.46\% \text{ error} \quad (Ans)$$

1.10 SURFACE TENSION (σ_s)

Many natural phenomena are associated with surface tension. Some of them are listed below:

or

- 1. A small quantity of liquid assuming the shape of globules and becoming spherical when made smaller
- 2. Rain drop falling over lotus leaves
- 3. Mercury spilling over the floor
- 4. Walking of some insects over water
- 5. Floating of a carefully placed needle on a water surface

These observations tell us that liquids behave as if their surfaces were stretched like membranes under tension. Actually, there is no membrane, but a membranelike situation is obtained by the property of cohesion (cohesion means intermolecular attraction between molecules of same liquid).

Fig. 1.39 Surface tension

Consider a free surface as shown in Fig. 1.39. All molecules inside the medium are attracted equally in all directions by the surrounding molecules, but the one on the surface does not have a molecule above to pull it upwards, and it is therefore attracted inwards. This results in an inward attraction on particles in and near the surface and

tends to make the surface area as small as possible. Consequently, the surface film is under a tension equal to its length.

The tensile strength of the surface film computed per unit length is termed as *surface tension*. Since the magnitude is small compared to gravitational forces and pressure, the surface tension is usually neglected, but becomes quite significant when there is a free surface and the boundary conditions are small as in the case of small-scale models of hydraulic engineering structures. The surface tension is expressed in N/m. The values of surface tension (Table 1.19) depend on the following factors:

- 1. Nature of liquid
- 2. Nature of surrounding matter (e.g., solid, liquid, or gas)
- 3. Kinetic energy (and hence, the temperature of the liquid molecules)

Table 1.19	Variation of surface ten-
sion with	respect to temperature

Temperature (°C)	σ(N/m) (water-air)
0	0.0756
10	0.0742
20	0.0728
3	0.0712
40	0.0696
50	0.0679
60	0.0662
70	0.0644
80	0.0626
90	0.0608
100	0.0589

As the water temperature range of the data is considerable, one requires relationships for σ as functions of temperature T. Streeter and Wylie (1979) have given the variation of σ for water with T ranging from 0°C to 100°C in a tabular form. Using these data, the following best-fit equations were obtained in SI units. The maximum percentage error in the use of Eqn (1.40) is 1.0%, which occurs in a very narrow band of temperature.

$$\sigma = 0.0762 \exp(-0.00233T) \tag{1.40}$$

1.10.1 **Pressure Inside a Water Droplet**

To obtain pressure inside a water droplet, use of surface tension is needed, which is explained further.

Let *p* be the pressure inside the droplet above the outside pressure where d is the diameter of the droplet and σ is the surface tension of the liquid (Fig. 1.40). From the free body diagram, we have

Pressure force =
$$p \times \frac{\pi}{4} d^2$$

 $p = \frac{4\sigma}{d}$

Surface tension force acting around the circumference = $\sigma \times \pi d$

Under the equilibrium conditions, these two forces will be equal and opposite, i.e.,

$$p \times \frac{\pi}{4} d^2 = \sigma \times \pi \times d$$

Therefore,

From Eqn (1.41), it is seen that pressure intensity decreases with the increase in the diameter of the droplet.

1. Pressure inside a soap bubble (Fig. 1.41) Soap bubbles have two surfaces on which surface tension σ acts.

From the free body diagram, we have

$$p \times \frac{\pi}{4} d^2 = 2 \times \sigma \times \pi \times d$$
$$p = \frac{8\sigma}{d}$$

or

Since the soap solution has a high value of surface tension σ , even with small pressure of blowing a soap bubble will tend to grow larger in diameter (hence, formation of large soap bubbles).

2. A liquid jet

Let us consider a cylindrical liquid jet of diameter d and length l, as shown in Fig. 1.42.

Surface tension

Fig. 1.40 Free body diagram of water droplet

(1.41)

(1.42)

Pressure force = $p \times l \times d$

Surface tension force = $\sigma \times 2 \times l$ Equating the two forces, we have

$$p = \frac{2\sigma}{d} \tag{1.43}$$

 $\sigma = 0.1875$ N/m (Ans)

Example 1.42 A soap bubble 60.0 mm in diam-

of a liquid jet

eter has an internal pressure in excess of the outside pressure of 25 N/m^2 . What is the tension in the soap film?

Given, diameter of the soap bubble = 60×10^{-3} m and p = 25 N/m² Solution

We have

$$25 = \frac{8 \times \sigma}{60.0 \times 10^{-3}}$$

 $p = \frac{8\sigma}{r}$

or

So.

Example 1.43 To form a stream of bubbles, air is introduced through a nozzle into a tank of water (at 20°C). If the process requires 2.0 mm diameter bubbles to be formed, by how much should the air pressure at the nozzle must exceed that of the surrounding water. Take surface tension at $20^{\circ}C = 0.0735$ N/m.

Solution Given, diameter of the bubbles to form = $2.0 \text{ mm} = 2 \times 10^{-3} \text{ m}$ Surface tension = 0.0735 N/m 1 ----

We have

or

$$p = \frac{40}{d}$$
$$= \frac{4 \times 0.0735}{2 \times 10^{-3}}$$
$$p = 147 \text{ N/m}^2 \quad (Ans)$$

Example 1.44 What force is necessary to lift a thin platinum wire ring of 4.0 cm in diameter from a water surface? Assume the surface tension of water as 0.0728 N/m and neglect the weight of the wire (Fig. 1.43).

Solution Given, diameter of the wire

Water Water surface surface 1-8' D Fig. 1.43

Surface tension = 0.0728 N/m

Assuming $d \ll D$,

= 4.0 cm = 0.04 m

$$F = 2(\pi D\sigma) = 2 \times \pi \times 0.04 \times 0.0728$$
$$F = 0.01829 \text{ N} \quad (Ans)$$

Example 1.45 A spherical water droplet of 1.2 mm in diameter splits up in air into 60 smaller droplets of equal size. Find the work required in splitting up the droplet. The surface tension coefficient of water in air is 0.073 N/m.

Solution

Note An increase in the surface area out of a given mass takes place when a bigger droplet splits up into a number of smaller ones. So, the work required is given by the product of surface tension coefficient and the increase in surface area.

Let, d be the diameter of the smaller droplets.

From conservation of mass, $60 \times \pi \times \frac{d^3}{6} = \frac{\pi \times 0.0012^3}{6}$, $d = 0.31 \times 10^{-3}$ m

Initial surface area (due to single droplet) = $\pi \times (0.012)^2 = 4.523 \times 10^{-6} \text{ m}^2$ Final surface area (due to 60 smaller droplets) = $60 \times \pi \times (0.31 \times 10^{-3}) = 0.0584 \text{ m}^2$ Hence, the increase in surface area = $0.0584 - 4.523 \times 10^{-6} = 0.0584 \text{ m}^2$ The required work = $0.073 \times 0.584 = 4.26 \times 10^{-3} \text{ J}$ (*Ans*)

Example 1.46 Calculate the work done in blowing a soap bubble of diameter 15 cm. Assume the surface tension of soap solution = 0.04 N/m.

Solution We know that the soap has two interfaces. So,

Work done = surface tension \times total surface area

=
$$0.04 \times 4 \times \pi \times \left(\frac{15}{2} \times 10^{-2}\right)^2 \times 2 = 5.65 \times 10^{-3} \text{ Nm}$$
 (Ans)

Example 1.47 If the surface tension at air-water interface is 0.073 N/m, what is the pressure difference between the inside and outside of an air bubble of diameter 0.02 mm?

Solution An air bubble has only one surface. Therefore,

$$\Delta p = \frac{4\sigma}{d} = \frac{4 \times 0.073}{0.02 \times 10^{-3}} = 14.6 \text{ kPa} \quad (Ans)$$

SUMMARY

- Fluid mechanics is a branch of mechanics that deals with the static, kinematic, and dynamic aspects of fluids. Fluids are at rest when there is no external unbalanced force and this aspect of the study of fluids is called fluid statics. Kinematics refers to the study of fluids in motion where pressure forces are not considered, and if the pressure forces are also considered for the fluid in motion, it is called fluid dynamics.
- The mass density or specific mass of a liquid is equal to mass per unit volume, i.e., $\rho = \frac{m}{V}$.
- The weight density or specific weight of a fluid is equal to weight per unit volume, i.e., $\gamma = \frac{W}{V} = \rho g$.

- Specific volume is a reciprocal of mass density, i.e., $V_s = \frac{1}{\rho}$.
- Specific gravity is defined as the ratio of the specific weight of the liquid to the specific weight of a standard liquid, i.e., $S = \frac{\gamma_{\text{liquid}}}{\gamma_{\text{water}}}$.
- Relative density is a dimensionless ratio of the densities of two material, i.e., $G = \frac{\rho_{obj}}{\rho_{reference}}.$
- Gases are highly compressible in comparison to liquids, with changes in gas density directly related to changes in pressure and temperature through the equation $p = \rho RT$. This equation is known as ideal or perfect gas law.
- The shear stress is proportional to the velocity gradient, i.e., $\tau = \mu \frac{du}{dv}$.
- Kinematic viscosity is given by $\nu = \frac{\mu}{\rho}$.
- Poise and stokes are the units of dynamic viscosity and kinematic viscosity, respectively, in CGS units.
- Bulk density of elasticity is given by $K = \frac{-dp}{\left(\frac{d\forall}{\forall}\right)}$.
- Compressibility is the reciprocal of bulk modulus of elasticity, i.e., $\beta = \frac{1}{\nu}$.
- A liquid forms an interface with a second liquid or gas. The surface energy per unit area of interface is known as surface tension or coefficient of surface tension.
 - (a) Surface tension is expressed in N/m.

(b) For liquid drop,
$$p = \frac{4\sigma}{d}$$
.

(c) For soap bubble,
$$p = \frac{8\sigma}{d}$$
.

(d) For liquid jet,
$$p = \frac{2\sigma}{d}$$
.

- Liquids have both cohesion and adhesion, which are forms of molecular attraction. The rise or fall of liquid in small diameter tubes is due to capillarity. Liquids such as water, which wet a surface, cause capillary rise. In non-wetting liquids (e.g., mercury), capillary depression is caused.
- Capillary rise or fall of a liquid is given by $h = \frac{4\sigma\cos\theta}{\gamma d}$.
- The value of θ for water is considered equal to zero and for mercury equal to 128°.
- All liquids exposed to a gaseous environment have a tendency to evaporate. Evaporation is a process in which the liquid loses its molecules to the gas surrounding it. The rate of evaporation depends on the difference in molecular energy levels between the liquid and the gas. The pressure at which the liquid begins to boil is called vapor pressure of the liquid at that temperature.

SUGGESTED READINGS

- Cengal, Y.A. and J.M. Cimbala, *Fluid Mechanics*, Tata McGraw-Hill, New Delhi, 2006.
- Evett, Jack B. and C. Liu, *Fundamentals of Fluid Mechanics*, McGraw-Hill, Singapore, 1988.
- Fox, R.W. and A.T. McDonald, *Introduction to Fluid Mechanics*, 7th edn, Wiley, New York, 2001.
- Munson, B.R., D.F. Young, and T.H. Okishi, *Fundamentals of Fluid Mechanics*, 5th edn, John Wiley & Sons (Asia), Singapore, 2006.
- Seshadri, C.V. and S.V. Patankar, *Elements of Fluid Mechanics*, Prentice-Hall of India, New Delhi, 1971.
- Streeter, V.L. and E.B. Wylie, *Fluid Mechanics*, 7th edn, McGraw-Hill, New York, 1979.
- Touloukian, Y.S., S.G. Saxena, and P. Hestermans, *Thermophysical Properties of Matter*, The TPRC Data series, Vol.11, Viscosity, Plenum, New York, 1975.

White, F.M., Fluid Mechanics, 5th edn, McGraw-Hill, New York, 2003.

Multiple Choice Questions

- 1. The mass per unit volume of a liquid at a standard temperature and pressure is called
 - (a) specific weight (b) mass density
 - (c) specific gravity (d) none of the above
- 2. The weight per unit volume of a liquid at a standard temperature and pressure is called
 - (a) mass density (b) specific gravity
 - (c) specific weight (d) none of the above
- 3. Which of the following is the specific weight of water in SI units?
 - (a) 9.81 kN/m³ (b) 9.81 × 10⁶ kN/m³
 - (c) 9.81 N/m^2 (d) none of the above

4. The specific gravity of water is taken as

- (a) 0.001 (b) 0.01
- (c) 0.1 (d) 1
- 5. The specific gravity of sea water is ______that of pure water.
 - (a) Same as (b) Less than

(c) More than

- 6. The density of liquid in gm/cm^3 is numerically equal to its specific gravity.
 - (a) True (b) False
- 7. When a shear stress is applied to a substance it is found to resist it by static deformation. The substance is a
 - (a) liquid (b) solid
 - (c) gas (d) fluid

- 8. The condition of no-slip at rigid boundaries is applicable to
 - (a) flow of Newtonian fluid (b) flow of
 - (b) flow of ideal fluids only(d) flow of all non-Newtonian fluids
 - (c) flow of all real fluids (d) flow
- 9. The variation in the volume of a liquid with the variation of pressure is called its
 - (a) surface tension (b) compressibility
 - (c) capillarity (d) viscosity
- 10. When a tube of smaller diameter is dipped in water, the water rises in the tube with an upward ______ surface.
 - (a) Concave (b) Convex
- 11. Newton's law of viscosity relates to which of the following?
 - (a) Pressure, velocity, and viscosity
 - (b) Shear stress and rate of angular deformation in a fluid
 - (c) Shear stress, temperature, viscosity, and velocity
 - (d) None of the above
- 12. With an increase in size of tube, the rise or depression of liquid in the tube due to surface tension will
 - (a) decrease
 - (b) increase
 - (c) remain unchanged
 - (d) depend upon the characteristics of liquid
- 13. In the manufacture of lead shots, the property of surface tension is utilized.(a) Agree(b) Disagree
- 14. Newton's law of viscosity states that
 - (a) shear stress is directly proportional to the velocity
 - (b) shear stress is directly proportional to the velocity gradient
 - (c) shear stress is directly proportional to shear strain
 - (d) shear stress is directly proportional to the viscosity
- 15. Kinematic viscosity is defined as equal to
 - (a) dynamic viscosity/density (b) dynamic viscosity \times density
 - (c) dynamic viscosity \times pressure (d) pressure \times density
- 16. Poise is the unit of
 - (a) mass density
 - (c) viscosity
- 17. Stoke is the unit of
 - (a) surface tension
 - (c) kinematic viscosity
- 18. Surface tension is the unit of
 - (a) force per unit area
 - (c) force per unit volume
- 19. The viscosity of
 - (a) liquids increases with temperature
 - (b) gases increases with temperature

- (b) viscosity
- (d) none of the above

(b) kinematic viscosity(d) velocity gradient

- (b) force per unit length
- (d) none of the above

- 52 Fluid Mechanics and Machinery
 - (c) fluids decreases with temperature
 - (d) fluids increases with temperature

20. The gases are considered incompressible when Mach number

- (a) is equal to 1.0 (b) is equal to 0.5
- (c) is more than 0.3(d) is less than 0.2

21. Which of the following property do practical fluids possess?

- (a) Viscosity (b) Surface tension
- (c) Compressibility (d) All of the above

22. To which of the following does water belong to?

- (a) Newtonian fluids (b) Non-Newtonian fluids
- (c) Compressible fluids (d) None of the above

23. A fluid is a substance that

- (a) always expands until it fills any container
- (b) is practically incompressible
- (c) cannot withstand any shear force
- (d) obeys the newton's law of viscosity
- 24. The property of fluids by which their molecules get attracted to another body is known as
 - (a) capillary action (b) surface tension
 - (c) adhesion (d) cohesion
- 25. The bulk modulus of elasticity
 - (a) is independent of temperature
 - (b) increases with the pressure
 - (c) has the dimensions of 1/P
 - (d) is larger when the fluid is more compressible
- 26. Falling drops of water become spheres due to
 - (a) adhesion (b) cohesion
 - (c) surface tension (d) viscosity
- 27. The gases are considered incompressible when Mach number
 - (a) is equal to 1.0 (b) is equal to 0.5
 - (c) is more than 0.3(d) is less than 0.2

28. An ideal fluid is defined as the fluid which

- (a) is incompressible
- (b) is compressible
- (c) has negligible surface tension
- (d) is incompressible and non-viscous (inviscid)
- 29. A 40 cm cubical block slides on oil (viscosity = 0.8 Pas), over a large plane horizontal surface. If the oil film between the block and the surface has a uniform thickness of 0.4 mm, what will be the force required to drag the block at 4 m/s? Ignore the end effects and treat the flow as two dimensional.
 - (a) 1280 N (b) 1640 N
 - (c) 1920 N (d) 2560 N
 - © Oxford University Press

Review Questions

- 1. Define specific weight, mass density, specific volume, and specific gravity.
- 2. What are the different properties of liquid?
- 3. Define a fluid. What is the difference between an ideal fluid and a real fluid?
- **4.** What is the difference between a fluid and a solid? Differentiate between compressible fluids and incompressible fluids.
- 5. Define Newtonian and non-Newtonian fluids.
- **6.** Why is the specific weight of sea water more than that of pure water? Give their numerical values.
- 7. Define the terms cohesion and adhesion.
- 8. What kind of rheological materials are paint and grease?
- 9. Distinguish between Newtonian and non-Newtonian fluids.
- **10.** What is vapor pressure? What is its significance in flow problems? What do you understand by the term cavitation?
- 11. Why do the different liquids exert different vapor pressures?
- **12.** Write a short note on surface tension.
- **13.** Define surface tension. Derive expressions for the pressure (a) within a droplet of water and (b) inside a soap bubble.
- 14. Define the term viscosity and give the units in which it is expressed.
- **15.** On what factors does the viscosity depend?
- **16.** What is the difference between dynamic viscosity and kinematic viscosity? State their units of measurements.
- **17.** State the Newton's law of viscosity and give examples of its application.
- **18.** How does viscosity of a fluid vary with temperature?
- **19.** Explain the phenomenon of capillarity. Obtain an expression for capillary rise of a liquid.
- 20. Define compressibility. How is it related to bulk modulus of elasticity?
- **21.** Mention some examples where compressibility of water is taken into account.

Problems

1. If the specific weight of a liquid is 8 kN/m^3 , what is its mass density?

(Ans: 815 kg/m³)

2. If specific gravity of a liquid is 0.8, make calculations for its mass density, specific volume, and specific weight.

(Ans: 800 kg/m³, $1.25 \times 10^{-3} \text{ m}^{3}/\text{kg}$, 7848 N/m³)

3. Calculate the specific weight, specific mass, and specific gravity of a liquid having a volume as 4 m³ and weighing 30 kN.

(Ans: 7500 N/m³, 764.53 kg/m³, 0.76)

4. One liter of petrol weighs 7.02 N. Calculate the specific weight, density, specific volume, and relative density.

(Ans: 7.02 kN/m³, 716 kg/m³, 1.395×10^{-3} m³/kg, 0.716)

Air is kept at a pressure of 200 kPa and a temperature of 30°C in a 500 L container. What is the mass of the air? (Ans: 1.15 kg)

54 Fluid Mechanics and Machinery

- Calculate the gas constant and density of certain gas weighing 14.7 N/m³ at 30°C and at an absolute pressure of 196.2 kN/m². (Ans: 430 J/kgK)
- 7. Carbon tetrachloride at 20°C has a viscosity of 0.000967 Ns/m². What shear stress is required to deform this fluid at a strain rate of 5000 s^{-1} ?

(**Ans:** 4.84 Pa)

- A plate 0.5 mm distant from a fixed plate moves at 0.25 m/s and requires a force per unit area of 2.0 Pa to maintain this speed. Determine the viscosity of the fluid between the plates. (Ans: 0.00400 Ns/m²)
- **9.** Two horizontal flat plates are placed 0.15 mm apart and the space between them is filled with an oil of viscosity 1 poise. The upper plate of area 1.5 m² is required to move with a speed of 0.5 m/s relative to the lower plate. Determine the necessary force and power required to maintain this speed.

(Ans: 500 N, 0.25 kW)

10. The velocity distribution over a plate is given by, $u = \frac{3}{4}y - y^2$, where *u* is

the velocity in meters per second at a distance y meter above the plate. Determine the shear stress at y = 0 and y = 0.2 m. Take $\mu = 8.4$ poise.

- 11. The specific gravity of water at 20°C is 0.998 and its viscosity is 0.001008 Ns/m². Find its kinematic viscosity. (Ans: $1.009 \times 10^{-6} \text{ m}^2/\text{s}$)
- 12. A piston of 69 mm diameter rotates concentrically inside a cylinder 70 mm diameter. Both the piston and the cylinder are 80 mm long. Find the tangential velocity of the piston if the space between the cylinder and the piston is filled with oil of viscosity 0.235 Ns/m² and the torque of 0.0143 N m is applied. (Ans: 4.87 m/s)
- **13.** An increase in pressure of a liquid from 7.5 MPa to 15 MPa- results into 0.2% decrease in its volume. Determine the bulk modulus of elasticity and coefficient of compressibility of a liquid.

(Ans: 3.75×10^9 N/m², 0.267×10^{-9} m²/N)

- 14. A 20 mm wide gap between two vertical plane surfaces is filled with an oil of specific gravity 0.85 and dynamic viscosity 2.5 Ns/m². A metal plate 1.25 m \times 1.25 m \times 0.2 cm thick and weighing 30 N is placed mid-way in the gap. Find the force if the plate is to be lifted up with a constant velocity of 0.12 m/s. (Ans: 108.11 N)
- 15. A square plate of size $1 \text{ m} \times 1 \text{ m}$ and weighing 392.4 N slides sown an inclined plane with a uniform velocity of 0.2 m/s as shown in Fig. 1.44. The inclined plane is laid on a slope of 5 vertical to 12 horizontal and has an oil film of 1 mm thickness. Calculate the dynamic viscosity of oil.

(**Ans:** 0.755 N s/m^2)

u = 0.2 m/s

Fig. 1.44

- 16. A liquid has a viscosity of 0.005 N s/m² and density of 850 kg/m³. Calculate the kinematic viscosity. (Ans: $5.882 \times 10^{-6} \text{ m}^2/\text{s}$)
- 17. Calculate the work done in blowing a soap bubble of diameter 12 cm. Assume the surface tension of soap solution = 0.04 N/m.

(Ans: 36.2×10^{-4} N m)

- 18. Neglecting the weight of the wire, what force is required to lift a thin wire ring 40 mm in diameter from a water surface at 20°C? (Ans: 0.0183 N)
- **19.** What is the pressure within a 1 mm diameter spherical droplet of water relative to the atmospheric pressure outside? Assume σ for pure water to be 0.073 N/m. (Ans: 292 N/m²)
- **20.** A capillary tube having an inside diameter 5 mm is dipped in water at 20°C. Determine the height of water which will rise in the tube. Take $\sigma = 0.075$ N/m and $\alpha = 60^{\circ}$. (Ans: 5.2 mm)
- **21.** Find the capillary rise in a 3 mm glass tube when immersed vertically in water. Assume $\sigma = 0.071$ N/m. (Ans: 9.69 mm)
- **22.** Distilled water at 10°C stands in a glass tube of 8 mm diameter at a height of 25 mm. What is the true static height? (Ans: 21.2 mm)
- 23. At 30°C what diameter glass tube is necessary to keep the capillary height change of water less than 1mm? (Ans: ≥29.2 mm)
- 24. Derive an expression for pressure difference across a spherical droplet. Using the result, find the surface tension in a soap bubble of 50 mm diameter when the inside pressure is 1.96 N/m² above the atmosphere. (Ans: 0.0125 N/m)

Answers to Multiple Choice Questions

1. (b), 2. (c), 3. (a), 4. (d), 5. (c), 6. (a), 7. (b), 8. (c), 9. (b), 10. (a), 11. (b), 12. (a), 13. (a), 14. (b), 15. (a), 16. (c), 17. (c), 18. (b), 19. (b), 20. (d), 21. (d), 22. (a), 23. (c), 24. (c), 25. (c), 26. (c), 27. (d), 28. (d), 29. (a)