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1

Introduction1 Introduction

1.1 Computers, Microprocessors, Microcomputers, Microcontrollers

A computer system is shown in Figure 1-1. We see a CPU, or central processor unit, memory 
(ROM and RAM), containing the program and data, an I/O interface with associated input and 
output ports, and three buses connecting the elements of the system together. The organization 
of the program and data into a single memory block is called a von Neumann architecture, after 
John von Neumann, who described this general-purpose, stored-program computer in 1945. 
In Figure 1-1 the data, address, and control buses consist of many wires, for example 8, 16, 32 

Figure 1-1 Von Neumann computer architecture.
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2  Chapter 1 / Introduction

or more, that carry binary signals from one place to another in the computer system. This is 
a classical computer system block diagram, and all computers discussed in this text have this 
basic architecture.

There is another major computer architecture type called the Harvard architecture in which 
two completely separate memories are used—one for the program and one for the data. This 
architecture is often found in digital signal processing (DSP) chips and some other microcon-
troller chips such as Microchip Technology PIC microcontrollers (Figure 1-2).

Until 1971, when the Intel Corporation introduced the first micropro-
cessor, the 4004, the CPU was constructed of many components. Indeed, in 
1958 the Air Force SAGE computer required 40,000 square feet and 3 mega-
watts of power; it had 30,000 tubes with a 4K x 32 bit word magnetic core 
memory. The first mass-produced minicomputer, the Digital Equipment 

Company’s PDP-8, appeared in 1964. This was the start of a trend toward less expensive, smaller 
computers suitable for use in nontraditional, non–data processing applications. Intel’s great con-
tribution was to integrate the functions of the many-element CPU into one (or at most a few) inte-
grated circuits. The term microprocessor first came into use at Intel in 19721 and, generally, refers 
to the implementation of the central processor unit functions of a computer in a single, large scale 
integrated (LSI) circuit. A microcomputer, then, is a computer built using a microprocessor and a 
few other components for the memory and I/O. The Intel 4004 allowed a four-chip microcomputer 
consisting of a CPU, a read-only memory (ROM) for program, read/write memory (RAM) for 
data (using the Harvard architecture), and a shift register chip for output expansion.

The Intel 4004 was a 4-bit microprocessor and led the way to the development of the 
8008, the first 8-bit microprocessor, introduced in 1972. This processor had 45 instructions, a 
30- microsecond average instruction time, and could address 16 kilobytes of memory. Today, of 
course, we have advanced far beyond these first microcomputers. Table 1-1 gives a summary 
time line of many of the important developments leading to our microcontrollers of today.

1 R. N. Noyce and M. E. Hoff Jr., A History of Microprocessor Development at Intel. IEEE MICRO, February 1981.

A microcomputer is a microproces-
sor with added memory and I/O.

Figure 1-2 Harvard computer architecture.
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1.1 Computers, Microprocessors, Microcomputers, Microcontrollers  3

Table 1-1 Microcomputer Development Time Line

Year Computer Event

mid-1800s Charles Babbage difference 
engine

A difference engine was completed in 1991 at the Science Museum in London to 
Babbage’s original plans. It had around 4000 parts and weighed almost 3 tons. It 
successfully calculated a result to 31 digits.

1944 IBM Automatic Sequence 
Controlled Calculator

Also called the Harvard Mark I computer, it introduced the Harvard architecture with 
separate data and program memory. Built with switches, relays, and other mechanical 
components, it had over 700,000 components, and weighed 10,000 pounds.

1945 von Neumann machine 
described

While working on the EDVAC computer project, John von Neumann described a 
stored-program computer with data and program in the same memory.

1946 ENIAC Electronic Numerical Integrator and Computer. With over 17,000 vacuum tubes and 
7200 crystal diodes, it weighed 27 tons and consumed 150 kW of power.

1947 Point contact transistor 
invented

John Bardeen and Walter Brattain at AT&T Bell Labs.

1948 Junction transistor invented William Shockley at AT&T Bell Labs.

1951 EDVAC The Electronic Discrete Variable Automatic Computer was a successor to ENIAC. It 
computed in binary instead of decimal.

1951 Magnetic core memory 
invented

Jay Forrester at MIT based his invention on work by An Wang at Harvard University in 
1949.

1958 Integrated circuit invented Jack Kilby at Texas Instruments.

1960 MOS transistor invented John Atalla and Dawon Kahng at AT&T Bell Labs and Robert Noyce at Fairchild 
Semiconductor.

1963 CMOS transistor invented C. T. Sah and Frank Wanlass; Fairchild R & D Laboratory.

1964 First static RAM 64-bit memory, from Fairchild Semiconductor.

1964 PDP-8 Digital Equipment Corporation’s first mass-produced minicomputer.

1964 Control Data Corporation 
CDC 6600

First reduced instruction set computer (RISC).

1965 Moore’s law proposed Gordon Moore at Fairchild Semiconductor predicted that the number of components 
per chip would double every one to two years.

1970 Intel 1103 First dynamic RAM chip, 1 Kbit.

1970 Three-state logic invented National Semiconductor (now identified by trademark name Tristate)

1971 Intel 4004 First microprocessor: 2300 transistors, 740 kHz clock.

1971 Intel 1702 First erasable programmable read-only memory (EPROM); 256 x 8 bits.

1972 Intel 8008 First 8-bit microprocessor: 3500 transistors, 800 kHz clock.

1972 Hewlett-Packard HP-35 First pocket scientific calculator.

1973 IMP-16 First multichip 16-bit microprocessor; from National Semiconductor. It used five 
integrated circuits.

1974 PACE First single-chip, 16-bit microprocessor; from National Semiconductor.

1974 Intel 8080 6000 transistors, 2 MHz clock.

1975 MIT’s Altair 8800 computer First hobbyist computer based on the Intel 8080. It had 4K and 8K BASIC, 4 K RAM, 
and introduced the S-100 bus standard. The complete kit, including extra memory 
and I/O, cost $1400 ($5800 in 2008 currency adjusted for inflation).

1976 RCA 1802 RCA COSMAC, the first CMOS microprocessor, was used in space flights in the 1970s.

1977 Commodore Pet First all-in-one home computer with 4–8 K RAM, a 20 x 25 character display, and 
built-in cassette for data storage. It used the Mostek 6502 processor. It cost $795 
($2800 in 2008 currency adjusted for inflation).

1977 Apple II computer Preceded by the Apple I in 1976, this became Apple’s highly successful home 
computer. It cost $1298 with 4 K RAM and $2638 with 48K ($4680 and $9509, 
respectively, in 2008 currency).

continued
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4  Chapter 1 / Introduction

Table 1-1 Continued

Year Computer Event

1977 Radio Shack TRS-80 One of the first mass-produced home computers. It cost $600 ($2030 in 2008 currency).

1978 Intel 8086 Intel’s first 16-bit microcontroller: 29,000 transistors, 4.77 MHz clock.

1978 Motorola 6801 First microcontroller: 3500 transistors with 2 MHz clock. It was the first integration of 
an 8-bit CPU with 128 bytes of RAM, 2 Kbyte of ROM, a 16-bit timer, and serial 
I/O interface.

1978 First EEPROM Intel 2816: 2 Kbyte.

1979 Motorola 68000 First 32-bit microprocessor: 68,000 transistors, 8 MHz clock. It had 32-bit registers but 
16-bit internal and external data bus and 24-bit address bus. 

1980 BELLMAC-32A First single-chip, 32-bit microprocessor at AT&T Bell Labs; 146,000 transistors.

1980 Intel 8087 Math coprocessor to do floating point arithmetic.

1981 IBM Personal Computer 
introduced

Intel 8088 with 4.7 MHz clock, ROM BASIC, up to 640K RAM, CGA display adapter, 
and cassette. A 160 Kbyte floppy was optional. Its $3000 cost in 1981 is equivalent 
to $7400 in 2008.

1981 iAPX432 Intel’s first 32-bit microprocessor. Three chips with a total of 200,000 transistors. It had 
an 8 MHz clock.

1981 Osborne I First commercially successful portable computer. It weighed 23.5 pounds and had the 
CP/M II operating system, a 5-inch display, 64K memory, and 5.25-inch floppy disk. 
It cost $1795 ($4460 in 2008 currency).

1982 First RISC processor Reduced instruction set computer produced by the RISC Project at the University of 
California at Berkeley; 44,500 transistors. 

1982 Intel 80286 16-bit microprocessor: 134,000 transistors, 6 MHz clock.

1983 Compaq Portable First IBM PC compatible portable computer. It cost $3950 ($8400 in 2008 currency) 
and weighed 28 pounds.

1984 Flash EEPROM developed Toshiba.

1984 First Apple Macintosh 
computer

It used an 8 MHz Motorola 68000 microprocessor, 128K RAM, and a 400 Kbyte 
3.5-inch floppy. It cost $2495 ($5130 in 2008 currency).

1984 Motorola 68020 32-bit version of the 68000 microprocessor fabricated in CMOS: 190,000 transistors 
and 16 MHz clock.

1985 Intel 80386 32-bit microprocessor: 275,000 transistors, 16 MHz clock.

1989 Intel 80486 32-bit microprocessor: 1.2 million transistors, 25 MHz clock.

1990 FCC Part 15, Subpart B Rules governing radiofrequency emissions for electronic equipment including personal 
computers. These federal rules require testing and certification of electronic equipment.

1992 IBM PowerPC First single-chip PowerPC reduced instruction set computer; 32 bits 2.8 million 
transistors, 68 MHz clock.

1996 DEC Alpha 21064 Digital Equipment Corporation, 64-bit pipelined processor, 9.7 million transistors, 
500 MHz clock.

2000 Intel Pentium IV 64-bit microprocessor: 42 million transistors, 1.4 GHz clock.

2005 AMD Athlon 64 64-bit microprocessor: 200 million transistors, 2.6 GHz clock.

2008 AMD Phenom 64-bit microprocessor: 450 million transistors, 3 GHz clock.

1.2 Moore’s Law

Table 1-1 shows a remarkable, exponential growth rate in the size and speed of the integrated 
circuits used in microprocessors and microcontrollers. In 1965 Intel cofounder Gordon Moore 
observed this phenomenon and predicted that the growth would continue doubling every 
18 to 24 months. Although some observers claim this is a self-fulfilling prophecy because 
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1.3 Microcontrollers  5

manufacturers concentrate on improving their technology, Moore’s now four-decade-old 
observation has continued to be true, as shown in Figures 1-3 and 1-4.

1.3 Microcontrollers

This text primarily is about using computers in applications where the 
system is dedicated to performing a single task or a single group of tasks. 
These are called embedded applications, and examples are found almost 
everywhere in products from microwave ovens and toasters to automobiles. 
These are often control applications and make use of microcontrollers. A 

microcontroller is a microcomputer with its memory and I/O integrated into a single chip. In 
1991 the chip manufacturers delivered over 750 million 8-bit microcontrollers; by 2004 the 
industry’s annual total was 6.8 billion microcontroller units.2

2 http://www.instat.com/press.asp?ID=1445&sku=IN0502457SI

A microcontroller is a computer with 
CPU, memory, and I/O in one inte-
grated circuit chip.

Figure 1-3 Growth in number of transistors in microprocessors from late 1960s to first decade of 
the twenty-first century.
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6  Chapter 1 / Introduction

1.4 Some Basic Definitions

Throughout this text we use the following digital logic terminology.

Active high: Used to define a signal whose assertion level is logic high.

Active low: This term defines a signal whose assertion level is logic low. For example, the sig-
nal READ_L is asserted low. Although many data sheets and schematic diagrams make use of 
an overbar or some other notation, in this text we will denote active-low signals by adding the 
“_L” suffix to the signal name.

Assembly/Compile time: The time at which our programs are assembled or compiled. Quantities 
known at this time can be saved as constants in program memory (ROM). In an embedded sys-
tem, variable data must not be initialized at assembly/compile time.

Assert: Logic signals, particularly signals that control a part of the system, are asserted when 
the control, or action named by the signal, is being done. A signal may be low or high when it 
is asserted. For example, the signal WRITE indicates assertion when the signal is logic high.

Byte: A byte is 8 bits.
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Figure 1-4 Improvements in microprocessor clock frequency for the same period.

© Oxford University Press. All rights reserved.



1.4 Some Basic Definitions  7

Device loading: The device loading is an indication of what is connected to a device’s output. 
It determines the output voltage and current requirements of the device.

EEPROM: Electrically erasable programmable read-only memory—pronounced “double 
e prom”. This is an EPROM that can be erased by an electrical signal, eliminating the need to 
remove the chip from its circuit and exposing it to UV light, as is the case for EPROM.

EPROM: Erasable programmable read-only memory. First introduced by Intel in 1971, this 
PROM could be erased by exposing it to ultraviolet (UV) light. Erasable PROMs have a quartz 
window to allow the UV light into the package.

Fan-out: Fan-out is the number of similar devices one device’s output can drive.

Flash EEPROM: EEPROM may be erased and written to one byte at a time. Flash allows data 
to be erased and written in blocks and is thus faster than EEPROM. Flash is used mostly for 
program memory and EEPROM for variable data that must be retained when the power is 
removed. Note that Flash is sometimes called Flash EEPROM.

Logic high: The higher of the two voltages defining logic true and logic false. The value of a 
logic high depends on the logic family. For example, in the HCMOS family, logic high (at the 
input of a gate) is signified by a voltage greater than 3.15 V. This voltage is known as V

ihmin
.

Logic low: The lower of the two voltages defining logic true and false. In HCMOS, a logic low 
(at the input of a gate, V

ilmax
) is signified by a voltage less than 1.35 V.

Logical complement: The complement of a logical signal is an operator. We will use the over-
bar to donate the complementation. Thus, PUMP_ON is the complement of the active-high signal 
PUMP_ON.

Mixed-polarity notation: The notation used by most manufacturers of microcomputer compo-
nents defines a signal by using a name, such as WRITE, to indicate an action, and a polarity 
indicator to show the assertion level for the signal. Thus, the signal WRITE indicates that the 
CPU is doing a write operation when the signal is high. READ_L denotes that a read operation 
is going on when the signal is low.

Nibble: A nibble is 4 bits. There are two nibbles for each byte.

OTP EPROM: One-time-programmable EPROM. This is an EPROM without the quartz 
 window; thus it cannot be erased after it has been programmed.

Positive and negative edge trigger: Data latches may operate on a level or edge-triggered basis. 
There are positive (rising) and negative (falling) edge-triggered devices.

PROM: Programmable read-only memory. Memory that can be programmed by the user instead 
of at the factory, as must be done for ROM.

RAM: Random access memory. This memory can be read from and written to and is used in 
the microcontroller for variable data storage. The memory contents are lost when the power is 
removed. Therefore the memory is said to be volatile.

ROM: Read-only memory. The contents of this memory is programmed once, at the time 
of manufacture, and is nonvolatile. That is, the memory contents persist when the power is 
removed. ROM is used in microcontrollers for program storage.

Run time: This is when our program executes. Any variable data with initial values must be 
initialized at run time.

Tristate or three-state: A logic signal that can neither source nor sink current. It presents a high 
impedance load to any other logic device to which it is connected.

Word: A word is 16 bits.
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8  Chapter 1 / Introduction

1.5 Notation

Throughout this text, the notation shown in Table 1-2 is used.

1.6 Study Plan

The designs of embedded application systems and other more general-purpose computers are 
very similar. Our goal for this course is not to make you an expert in using a specific processor, 
but to give you the knowledge and tools to be able to effectively apply any processor in any 
application. We will do that by first studying the general principles necessary to understand 
each part of the system. You may then turn to the user’s manual for a specific processor and be 
able to more easily understand the information there and apply it in an application.

The basic operation of a stored-program, general-purpose computer is to be studied first. 
You’ll learn about registers, the arithmetic and logic unit, and how a computer works. Because 
much of your work in an introductory microprocessor/microcontroller course is likely to be 
learning the language and programming exercises, we introduce you to structured program 
design in Chapter 3. Designing software before writing it is vital in developing debuggable 
application software. We will guide you through an introduction to the central processor unit 
and how it addresses memory in Chapters 4 and 5 and introduce assembly language program-
ming in Chapter 6. You will need to study your own processor in parallel while reading these 
chapters.

Many embedded applications are written in C, which you may have learned in another 
programming class. A program written in C for an embedded application, however, has some 
significant differences from one written for a desktop computer. Chapter 7 will help you learn 
about these differences. Chapter 8 discusses debugging techniques helpful for assembly and 
C language programs.

Chapters 9 through 15 cover the basics of parallel and serial I/O, interrupts, memory, analog 
I/O, timers, and interfacing techniques for single-chip microcontrollers. Chapter 16 touches on 
real-time operating systems.

Table 1-2 Notation

0x Hexadecimal numbers are denoted by a leading 0x (e.g., 0xFFFF is the hexadecimal number FFFF).

When two memory locations are to be identified, the starting and ending addresses are given as 
0xFFFE:FFFF.

$ Hexadecimal numbers in Freescale assembly language examples use a $ to denote a hexadecimal 
number. $0F = 15.

% Binary numbers are denoted by a leading %. For example, 0xF may be written %1111.

@ A base-8 or octal number is preceded by @. Thus 0xF = @17.

Base 10 is the default base; unlike hexadecimal, binary or octal, it has no base indicator. Thus 0xF = 15.

0b In C programs, the 0b prefix is used to signify a binary number.

x An “x” indicates a don’t-care bit—that is, the bit may be zero or one.

* The “*” indicates a pointer in a C program.

_L A signal whose assertion level is low is followed by “_L.”
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