
 Principles of
MICROCOMPUTERS

and
MICROCONTROLLER

ENGINEERING

SECOND EDITION

International Version

FREDRICK M. CADY
Department of Electrical and Computer Engineering

Montana State University

1

© Oxford University Press. All rights reserved.

Principles of
MICROCOMPUTERS
and
MICROCONTROLLER
ENGINEERING

3
YMCA Library Building, Jai Singh Road, New Delhi 110001

Oxford University Press is a department of the University of Oxford.
It furthers the University’s objective of excellence in research, scholarship,

and education by publishing worldwide in

Oxford New York
Auckland Cape Town Dar es Salaam Hong Kong Karachi
Kuala Lumpur Madrid Melbourne Mexico City Nairobi

New Delhi Shanghai Taipei Toronto

With offices in
Argentina Austria Brazil Chile Czech Republic France Greece
Guatemala Hungary Italy Japan Poland Portugal Singapore
South Korea Switzerland Thailand Turkey Ukraine Vietnam

Oxford is a registered trade mark of Oxford University Press
in the UK and in certain other countries.

Adapted from a work originally published by Oxford University Press Inc.

This international version has been customized for South and South-East Asia and
is published by arrangement with Oxford University Press, Inc. It may not be sold elsewhere.

Copyright © 2009 by Oxford University Press

The moral rights of the author/s have been asserted.

Database right Oxford University Press (maker)

Second edition 2009
This international version 2009

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means,

without the prior permission in writing of Oxford University Press,
or as expressly permitted by law, or under terms agreed with the appropriate

reprographics rights organization. Enquiries concerning reproduction
outside the scope of the above should be sent to the Rights Department,

Oxford University Press, at the address above.

You must not circulate this book in any other binding or cover
and you must impose this same condition on any acquirer.

ISBN-13: 978-0-19-806226-4
ISBN-10: 0-19-806226-5

Printed in India by Saurabh Printers Pvt. Ltd, Noida 201301
and published by Oxford University Press

YMCA Library Building, Jai Singh Road, New Delhi 110001

© Oxford University Press. All rights reserved.

Contents

Preface ix

1 Introduction 1

1.1 Computers, Microprocessors,

Microcomputers, Microcontrollers 1

1.2 Moore’s Law 4

1.3 Microcontrollers 5

1.4 Some Basic Definitions 6

1.5 Notation 8

1.6 Study Plan 8

2 Microcontroller Architecture 9

2.1 Introduction 9

2.2 A Typical Microcontroller 9

2.3 The Picocontroller 11

2.4 The Microcontroller’s Memory 21

2.5 The Central Processor Unit 26

2.6 Timing 30

2.7 The I/O Interface 35

2.8 The Address, Data, and Control Buses 36

2.9 Some More Instructions 36

2.10 The Final Picocontroller Design 38

2.11 Software/Firmware Development 38

2.12 Remaining Questions 40

2.13 Conclusion and Chapter

Summary Points 40

2.14 Problems 41

3 Structured Program Design 43

3.1 The Need for Software Design 43

3.2 The Software Development Process 44

3.3 Top-Down Design 44

3.4 Design Partitioning 48

3.5 Bottom-Up Design 48

3.6 The Real-World Approach 49

3.7 Types of Design Activity 49

3.8 Design Tools 50

3.9 Top-Down Debugging and Testing 57

3.10 Structured Programming in

Assembly Language 58

3.11 Program Comments 58

3.12 Software Documentation 63

3.13 A Top-Down Design Example 64

3.14 Chapter Summary Points 68

3.15 Bibliography and Further Reading 70

3.16 Problems 70

4 Introduction to the CPU 72

4.1 Introduction 72

4.2 CPU Registers 72

4.3 Register Transfers 73

4.4 The Condition Code Register 74

4.5 The Programmer’s Model 82

4.6 Conclusion and Chapter Summary Points 82

4.7 Problems 82

5 Memory Addressing Modes 84

5.1 Introduction 84

5.2 Addressing Terminology 84

5.3 Memory Types 85

5.4 Computer Types and Memory Maps 85

5.5 Memory Architectures 88

5.6 Addressing Modes 91

5.7 Stack Addressing 98

5.8 Chapter Conclusion and Summary Points 100

5.9 Problems 101

v

© Oxford University Press. All rights reserved.

vi Contents

6 Assembly Language Programming 103

6.1 Assembly Language Programming Style 103

6.2 Structured Assembly Language

Programming 112

6.3 Interprocess Communication 118

6.4 Assembly Language Tricks of the Trade 125

6.5 Making It Look Pretty 126

6.6 Conclusion and Chapter Summary Points 126

6.7 Bibliography and Further Reading 127

6.8 Problems 127

7 Embedded C Programming 132

7.1 Introduction 132

7.2 Major Differences Between C for

Embedded and Desktop Applications 132

7.3 Architecture of a C Program 135

7.4 Assembly Language Interface 137

7.5 Bits and Bytes: Accessing I/O Registers 140

7.6 Interrupts 146

7.7 Conclusion and Chapter Summary Points 147

7.8 Bibliography and Further Reading 147

7.9 Problems 148

8 Debugging Microcontroller Software and
Hardware 150

8.1 Introduction 150

8.2 Program Debugging 150

8.3 Debugging Your Code 152

8.4 Debugging Tools 161

8.5 Typical Assembly Language Program Bugs 163

8.6 Debugging and Testing C Programs 168

8.7 Other Debugging Techniques 172

8.8 Conclusion and Chapter Summary Points 175

8.9 Bibliography and Further Reading 176

8.10 Problems 176

9 Computer Buses and Parallel I/O 177

9.1 Introduction 177

9.2 The Computer Bus 178

9.3 I/O Addressing 185

9.4 More Bus Ideas 194

9.5 Microcontroller I/O 197

9.6 More I/O Ideas 199

9.7 I/O Software 199

9.8 Conclusion and Chapter Summary Points 207

9.9 Problems 207

10 Interrupts and Real-Time Events 210

10.1 Introduction 210

10.2 The Interrupt Process 214

10.3 Multiple Sources of Interrupts 219

10.4 Simultaneous Interrupts: Priorities 220

10.5 Nested Interrupts 222

10.6 Other Interrupts 224

10.7 The Interrupt Service Routine or

Interrupt Handler 225

10.8 An Interrupt Program Template 226

10.9 Advanced Interrupts 228

10.10 Watchdog Timer or Computer

Operating Properly (COP) 229

10.11 Real-Time Interrupt 230

10.12 Conclusion and Chapter

Summary Points 230

10.13 Problems 232

11 Memory 234

11.1 Introduction 234

11.2 A Short History of Random

Access Memory 234

11.3 Semiconductor Memory 236

11.4 Memory Timing Requirements 242

11.5 Chapter Conclusion and

Summary Points 246

11.6 Problems 246

12 Serial I/O 248

12.1 Introduction 248

12.2 The Asynchronous Serial

Communication System 248

12.3 Standards for the Asynchronous Serial

I/O Interface 252

12.4 Asynchronous Serial Hardware

Interfaces 255

12.5 ASCII Data and Control Codes 261

12.6 Asynchronous Data Flow Control 264

12.7 Debugging and Trouble Shooting 264

12.8 Asynchronous Serial I/O Software 265

12.9 Synchronous Serial Peripheral

Interface (SPI) 266

12.10 SPI Interface Examples 271

12.11 Inter-Integrated Circuit (IIC or I2C) 281

12.12 Conclusion and Chapter

Summary Points 286

12.13 Problems 288

© Oxford University Press. All rights reserved.

Contents vii

13 Analog Input and Output 290

13.1 Introduction 290

13.2 Data Acquisition and Conversion 291

13.3 Shannon’s Sampling Theorem and

Aliasing 294

13.4 A/D Errors 297

13.5 Choosing the A/D Converter 301

13.6 The Analog-to-Digital Converter

Interface 304

13.7 Analog-to-Digital Converter Types 305

13.8 Digital-to-Analog Conversion 309

13.9 Other Analog I/O Methods 313

13.10 Conclusion and Chapter

Summary Points 313

13.11 Problems 315

14 Counters and Timers 317

14.1 Introduction 317

14.2 The Timer/Counter 317

14.3 Pulse-Width Modulation (PWM)

Waveforms 324

14.4 “Real” Real-Time Clock: Clock Time 325

14.5 Conclusion and Chapter Summary Points 325

14.6 Problems 327

15 Interfacing Techniques 329

15.1 Microcontroller Chip I/O 329

15.2 Simple Input Devices 332

15.3 Simple Display Devices 346

15.4 Parallel I/O Expansion 349

15.5 Parallel I/O Electronics 353

15.6 Temperature Measurements 357

15.7 Motor Control 358

15.8 Conclusion and Chapter

Summary Points 361

15.9 Bibliography and Further Reading 362

15.10 Problems 362

Appendix Binary Codes 365

A.1 Binary Codes Review 365

A.2 Problems 478

Solutions to Selected Problems 381

Index 403

© Oxford University Press. All rights reserved.

1

Introduction1 Introduction

1.1 Computers, Microprocessors, Microcomputers, Microcontrollers

A computer system is shown in Figure 1-1. We see a CPU, or central processor unit, memory
(ROM and RAM), containing the program and data, an I/O interface with associated input and
output ports, and three buses connecting the elements of the system together. The organization
of the program and data into a single memory block is called a von Neumann architecture, after
John von Neumann, who described this general-purpose, stored-program computer in 1945.
In Figure 1-1 the data, address, and control buses consist of many wires, for example 8, 16, 32

Figure 1-1 Von Neumann computer architecture.

CPU I/O
Interface

Data

Address

Control

External

Buses

Parallel
I/O

Ports

Serial
I/O

Ports

A/D
Input
Ports

Data

Address

Control

16

88

8

Memory
ROM and RAM

© Oxford University Press. All rights reserved.

2 Chapter 1 / Introduction

or more, that carry binary signals from one place to another in the computer system. This is
a classical computer system block diagram, and all computers discussed in this text have this
basic architecture.

There is another major computer architecture type called the Harvard architecture in which
two completely separate memories are used—one for the program and one for the data. This
architecture is often found in digital signal processing (DSP) chips and some other microcon-
troller chips such as Microchip Technology PIC microcontrollers (Figure 1-2).

Until 1971, when the Intel Corporation introduced the first micropro-
cessor, the 4004, the CPU was constructed of many components. Indeed, in
1958 the Air Force SAGE computer required 40,000 square feet and 3 mega-
watts of power; it had 30,000 tubes with a 4K x 32 bit word magnetic core
memory. The first mass-produced minicomputer, the Digital Equipment

Company’s PDP-8, appeared in 1964. This was the start of a trend toward less expensive, smaller
computers suitable for use in nontraditional, non–data processing applications. Intel’s great con-
tribution was to integrate the functions of the many-element CPU into one (or at most a few) inte-
grated circuits. The term microprocessor first came into use at Intel in 19721 and, generally, refers
to the implementation of the central processor unit functions of a computer in a single, large scale
integrated (LSI) circuit. A microcomputer, then, is a computer built using a microprocessor and a
few other components for the memory and I/O. The Intel 4004 allowed a four-chip microcomputer
consisting of a CPU, a read-only memory (ROM) for program, read/write memory (RAM) for
data (using the Harvard architecture), and a shift register chip for output expansion.

The Intel 4004 was a 4-bit microprocessor and led the way to the development of the
8008, the first 8-bit microprocessor, introduced in 1972. This processor had 45 instructions, a
30- microsecond average instruction time, and could address 16 kilobytes of memory. Today, of
course, we have advanced far beyond these first microcomputers. Table 1-1 gives a summary
time line of many of the important developments leading to our microcontrollers of today.

1 R. N. Noyce and M. E. Hoff Jr., A History of Microprocessor Development at Intel. IEEE MICRO, February 1981.

A microcomputer is a microproces-
sor with added memory and I/O.

Figure 1-2 Harvard computer architecture.

ROM RAM

Data

Address

Control

Buses

16

8

I/O
Interface

Parallel
I/O

Ports

Serial
I/O

Ports

A/D
Input
Ports

16

88

8

CPU

Data

Address

Control

Buses

Data Memory
and I/O

Program Memory

© Oxford University Press. All rights reserved.

1.1 Computers, Microprocessors, Microcomputers, Microcontrollers 3

Table 1-1 Microcomputer Development Time Line

Year Computer Event

mid-1800s Charles Babbage difference
engine

A difference engine was completed in 1991 at the Science Museum in London to
Babbage’s original plans. It had around 4000 parts and weighed almost 3 tons. It
successfully calculated a result to 31 digits.

1944 IBM Automatic Sequence
Controlled Calculator

Also called the Harvard Mark I computer, it introduced the Harvard architecture with
separate data and program memory. Built with switches, relays, and other mechanical
components, it had over 700,000 components, and weighed 10,000 pounds.

1945 von Neumann machine
described

While working on the EDVAC computer project, John von Neumann described a
stored-program computer with data and program in the same memory.

1946 ENIAC Electronic Numerical Integrator and Computer. With over 17,000 vacuum tubes and
7200 crystal diodes, it weighed 27 tons and consumed 150 kW of power.

1947 Point contact transistor
invented

John Bardeen and Walter Brattain at AT&T Bell Labs.

1948 Junction transistor invented William Shockley at AT&T Bell Labs.

1951 EDVAC The Electronic Discrete Variable Automatic Computer was a successor to ENIAC. It
computed in binary instead of decimal.

1951 Magnetic core memory
invented

Jay Forrester at MIT based his invention on work by An Wang at Harvard University in
1949.

1958 Integrated circuit invented Jack Kilby at Texas Instruments.

1960 MOS transistor invented John Atalla and Dawon Kahng at AT&T Bell Labs and Robert Noyce at Fairchild
Semiconductor.

1963 CMOS transistor invented C. T. Sah and Frank Wanlass; Fairchild R & D Laboratory.

1964 First static RAM 64-bit memory, from Fairchild Semiconductor.

1964 PDP-8 Digital Equipment Corporation’s first mass-produced minicomputer.

1964 Control Data Corporation
CDC 6600

First reduced instruction set computer (RISC).

1965 Moore’s law proposed Gordon Moore at Fairchild Semiconductor predicted that the number of components
per chip would double every one to two years.

1970 Intel 1103 First dynamic RAM chip, 1 Kbit.

1970 Three-state logic invented National Semiconductor (now identified by trademark name Tristate)

1971 Intel 4004 First microprocessor: 2300 transistors, 740 kHz clock.

1971 Intel 1702 First erasable programmable read-only memory (EPROM); 256 x 8 bits.

1972 Intel 8008 First 8-bit microprocessor: 3500 transistors, 800 kHz clock.

1972 Hewlett-Packard HP-35 First pocket scientific calculator.

1973 IMP-16 First multichip 16-bit microprocessor; from National Semiconductor. It used five
integrated circuits.

1974 PACE First single-chip, 16-bit microprocessor; from National Semiconductor.

1974 Intel 8080 6000 transistors, 2 MHz clock.

1975 MIT’s Altair 8800 computer First hobbyist computer based on the Intel 8080. It had 4K and 8K BASIC, 4 K RAM,
and introduced the S-100 bus standard. The complete kit, including extra memory
and I/O, cost $1400 ($5800 in 2008 currency adjusted for inflation).

1976 RCA 1802 RCA COSMAC, the first CMOS microprocessor, was used in space flights in the 1970s.

1977 Commodore Pet First all-in-one home computer with 4–8 K RAM, a 20 x 25 character display, and
built-in cassette for data storage. It used the Mostek 6502 processor. It cost $795
($2800 in 2008 currency adjusted for inflation).

1977 Apple II computer Preceded by the Apple I in 1976, this became Apple’s highly successful home
computer. It cost $1298 with 4 K RAM and $2638 with 48K ($4680 and $9509,
respectively, in 2008 currency).

continued

© Oxford University Press. All rights reserved.

4 Chapter 1 / Introduction

Table 1-1 Continued

Year Computer Event

1977 Radio Shack TRS-80 One of the first mass-produced home computers. It cost $600 ($2030 in 2008 currency).

1978 Intel 8086 Intel’s first 16-bit microcontroller: 29,000 transistors, 4.77 MHz clock.

1978 Motorola 6801 First microcontroller: 3500 transistors with 2 MHz clock. It was the first integration of
an 8-bit CPU with 128 bytes of RAM, 2 Kbyte of ROM, a 16-bit timer, and serial
I/O interface.

1978 First EEPROM Intel 2816: 2 Kbyte.

1979 Motorola 68000 First 32-bit microprocessor: 68,000 transistors, 8 MHz clock. It had 32-bit registers but
16-bit internal and external data bus and 24-bit address bus.

1980 BELLMAC-32A First single-chip, 32-bit microprocessor at AT&T Bell Labs; 146,000 transistors.

1980 Intel 8087 Math coprocessor to do floating point arithmetic.

1981 IBM Personal Computer
introduced

Intel 8088 with 4.7 MHz clock, ROM BASIC, up to 640K RAM, CGA display adapter,
and cassette. A 160 Kbyte floppy was optional. Its $3000 cost in 1981 is equivalent
to $7400 in 2008.

1981 iAPX432 Intel’s first 32-bit microprocessor. Three chips with a total of 200,000 transistors. It had
an 8 MHz clock.

1981 Osborne I First commercially successful portable computer. It weighed 23.5 pounds and had the
CP/M II operating system, a 5-inch display, 64K memory, and 5.25-inch floppy disk.
It cost $1795 ($4460 in 2008 currency).

1982 First RISC processor Reduced instruction set computer produced by the RISC Project at the University of
California at Berkeley; 44,500 transistors.

1982 Intel 80286 16-bit microprocessor: 134,000 transistors, 6 MHz clock.

1983 Compaq Portable First IBM PC compatible portable computer. It cost $3950 ($8400 in 2008 currency)
and weighed 28 pounds.

1984 Flash EEPROM developed Toshiba.

1984 First Apple Macintosh
computer

It used an 8 MHz Motorola 68000 microprocessor, 128K RAM, and a 400 Kbyte
3.5-inch floppy. It cost $2495 ($5130 in 2008 currency).

1984 Motorola 68020 32-bit version of the 68000 microprocessor fabricated in CMOS: 190,000 transistors
and 16 MHz clock.

1985 Intel 80386 32-bit microprocessor: 275,000 transistors, 16 MHz clock.

1989 Intel 80486 32-bit microprocessor: 1.2 million transistors, 25 MHz clock.

1990 FCC Part 15, Subpart B Rules governing radiofrequency emissions for electronic equipment including personal
computers. These federal rules require testing and certification of electronic equipment.

1992 IBM PowerPC First single-chip PowerPC reduced instruction set computer; 32 bits 2.8 million
transistors, 68 MHz clock.

1996 DEC Alpha 21064 Digital Equipment Corporation, 64-bit pipelined processor, 9.7 million transistors,
500 MHz clock.

2000 Intel Pentium IV 64-bit microprocessor: 42 million transistors, 1.4 GHz clock.

2005 AMD Athlon 64 64-bit microprocessor: 200 million transistors, 2.6 GHz clock.

2008 AMD Phenom 64-bit microprocessor: 450 million transistors, 3 GHz clock.

1.2 Moore’s Law

Table 1-1 shows a remarkable, exponential growth rate in the size and speed of the integrated
circuits used in microprocessors and microcontrollers. In 1965 Intel cofounder Gordon Moore
observed this phenomenon and predicted that the growth would continue doubling every
18 to 24 months. Although some observers claim this is a self-fulfilling prophecy because

© Oxford University Press. All rights reserved.

1.3 Microcontrollers 5

manufacturers concentrate on improving their technology, Moore’s now four-decade-old
observation has continued to be true, as shown in Figures 1-3 and 1-4.

1.3 Microcontrollers

This text primarily is about using computers in applications where the
system is dedicated to performing a single task or a single group of tasks.
These are called embedded applications, and examples are found almost
everywhere in products from microwave ovens and toasters to automobiles.
These are often control applications and make use of microcontrollers. A

microcontroller is a microcomputer with its memory and I/O integrated into a single chip. In
1991 the chip manufacturers delivered over 750 million 8-bit microcontrollers; by 2004 the
industry’s annual total was 6.8 billion microcontroller units.2

2 http://www.instat.com/press.asp?ID=1445&sku=IN0502457SI

A microcontroller is a computer with
CPU, memory, and I/O in one inte-
grated circuit chip.

Figure 1-3 Growth in number of transistors in microprocessors from late 1960s to first decade of
the twenty-first century.

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1.00E+08

1.00E+09

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

Year

4004 8008

8080
8086

68000
80286

80386
68030

80486
68040

PowerPC
Pentium

PowerPC2
AMD K6

 Pentium III
 Celeron

Itanium
 Pentium IV

N
um

be
r o

f T
ra

ns
is

to
rs

© Oxford University Press. All rights reserved.

6 Chapter 1 / Introduction

1.4 Some Basic Definitions

Throughout this text we use the following digital logic terminology.

Active high: Used to define a signal whose assertion level is logic high.

Active low: This term defines a signal whose assertion level is logic low. For example, the sig-
nal READ_L is asserted low. Although many data sheets and schematic diagrams make use of
an overbar or some other notation, in this text we will denote active-low signals by adding the
“_L” suffix to the signal name.

Assembly/Compile time: The time at which our programs are assembled or compiled. Quantities
known at this time can be saved as constants in program memory (ROM). In an embedded sys-
tem, variable data must not be initialized at assembly/compile time.

Assert: Logic signals, particularly signals that control a part of the system, are asserted when
the control, or action named by the signal, is being done. A signal may be low or high when it
is asserted. For example, the signal WRITE indicates assertion when the signal is logic high.

Byte: A byte is 8 bits.

0.1

1

10

100

1000

10000

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

Year

4004
8008

8080

8086
68000

80286

80386 68030
80486

68040 PowerPC

Pentium PowerPC2

AMD K6
Pentium III

Celeron Itanium

Pentium IV

Fr
eq

ue
nc

y
(M

H
z)

Figure 1-4 Improvements in microprocessor clock frequency for the same period.

© Oxford University Press. All rights reserved.

1.4 Some Basic Definitions 7

Device loading: The device loading is an indication of what is connected to a device’s output.
It determines the output voltage and current requirements of the device.

EEPROM: Electrically erasable programmable read-only memory—pronounced “double
e prom”. This is an EPROM that can be erased by an electrical signal, eliminating the need to
remove the chip from its circuit and exposing it to UV light, as is the case for EPROM.

EPROM: Erasable programmable read-only memory. First introduced by Intel in 1971, this
PROM could be erased by exposing it to ultraviolet (UV) light. Erasable PROMs have a quartz
window to allow the UV light into the package.

Fan-out: Fan-out is the number of similar devices one device’s output can drive.

Flash EEPROM: EEPROM may be erased and written to one byte at a time. Flash allows data
to be erased and written in blocks and is thus faster than EEPROM. Flash is used mostly for
program memory and EEPROM for variable data that must be retained when the power is
removed. Note that Flash is sometimes called Flash EEPROM.

Logic high: The higher of the two voltages defining logic true and logic false. The value of a
logic high depends on the logic family. For example, in the HCMOS family, logic high (at the
input of a gate) is signified by a voltage greater than 3.15 V. This voltage is known as V

ihmin
.

Logic low: The lower of the two voltages defining logic true and false. In HCMOS, a logic low
(at the input of a gate, V

ilmax
) is signified by a voltage less than 1.35 V.

Logical complement: The complement of a logical signal is an operator. We will use the over-
bar to donate the complementation. Thus, PUMP_ON is the complement of the active-high signal
PUMP_ON.

Mixed-polarity notation: The notation used by most manufacturers of microcomputer compo-
nents defines a signal by using a name, such as WRITE, to indicate an action, and a polarity
indicator to show the assertion level for the signal. Thus, the signal WRITE indicates that the
CPU is doing a write operation when the signal is high. READ_L denotes that a read operation
is going on when the signal is low.

Nibble: A nibble is 4 bits. There are two nibbles for each byte.

OTP EPROM: One-time-programmable EPROM. This is an EPROM without the quartz
 window; thus it cannot be erased after it has been programmed.

Positive and negative edge trigger: Data latches may operate on a level or edge-triggered basis.
There are positive (rising) and negative (falling) edge-triggered devices.

PROM: Programmable read-only memory. Memory that can be programmed by the user instead
of at the factory, as must be done for ROM.

RAM: Random access memory. This memory can be read from and written to and is used in
the microcontroller for variable data storage. The memory contents are lost when the power is
removed. Therefore the memory is said to be volatile.

ROM: Read-only memory. The contents of this memory is programmed once, at the time
of manufacture, and is nonvolatile. That is, the memory contents persist when the power is
removed. ROM is used in microcontrollers for program storage.

Run time: This is when our program executes. Any variable data with initial values must be
initialized at run time.

Tristate or three-state: A logic signal that can neither source nor sink current. It presents a high
impedance load to any other logic device to which it is connected.

Word: A word is 16 bits.

© Oxford University Press. All rights reserved.

8 Chapter 1 / Introduction

1.5 Notation

Throughout this text, the notation shown in Table 1-2 is used.

1.6 Study Plan

The designs of embedded application systems and other more general-purpose computers are
very similar. Our goal for this course is not to make you an expert in using a specific processor,
but to give you the knowledge and tools to be able to effectively apply any processor in any
application. We will do that by first studying the general principles necessary to understand
each part of the system. You may then turn to the user’s manual for a specific processor and be
able to more easily understand the information there and apply it in an application.

The basic operation of a stored-program, general-purpose computer is to be studied first.
You’ll learn about registers, the arithmetic and logic unit, and how a computer works. Because
much of your work in an introductory microprocessor/microcontroller course is likely to be
learning the language and programming exercises, we introduce you to structured program
design in Chapter 3. Designing software before writing it is vital in developing debuggable
application software. We will guide you through an introduction to the central processor unit
and how it addresses memory in Chapters 4 and 5 and introduce assembly language program-
ming in Chapter 6. You will need to study your own processor in parallel while reading these
chapters.

Many embedded applications are written in C, which you may have learned in another
programming class. A program written in C for an embedded application, however, has some
significant differences from one written for a desktop computer. Chapter 7 will help you learn
about these differences. Chapter 8 discusses debugging techniques helpful for assembly and
C language programs.

Chapters 9 through 15 cover the basics of parallel and serial I/O, interrupts, memory, analog
I/O, timers, and interfacing techniques for single-chip microcontrollers. Chapter 16 touches on
real-time operating systems.

Table 1-2 Notation

0x Hexadecimal numbers are denoted by a leading 0x (e.g., 0xFFFF is the hexadecimal number FFFF).

When two memory locations are to be identified, the starting and ending addresses are given as
0xFFFE:FFFF.

$ Hexadecimal numbers in Freescale assembly language examples use a $ to denote a hexadecimal
number. $0F = 15.

% Binary numbers are denoted by a leading %. For example, 0xF may be written %1111.

@ A base-8 or octal number is preceded by @. Thus 0xF = @17.

Base 10 is the default base; unlike hexadecimal, binary or octal, it has no base indicator. Thus 0xF = 15.

0b In C programs, the 0b prefix is used to signify a binary number.

x An “x” indicates a don’t-care bit—that is, the bit may be zero or one.

* The “*” indicates a pointer in a C program.

_L A signal whose assertion level is low is followed by “_L.”

© Oxford University Press. All rights reserved.

