
Programming in C
Second Edition

1

© Oxford University Press. All rights reserved.

Preface to the Second Edition .. iii
Preface to the First Edition ..v

1. Introduction to Programming, Algorithms and Flowcharts ..1
2. Basics of C ..39
3. Input and Output ..94
4. Control Statements ...117
5. Arrays and Strings ..169
6. Functions ..214
7. Pointers in C ...268
8. User-de ned Data Types and Variables ...350
9. Files in C ..388

10. Linked Lists ...423
11. Advanced C ..460
12. Stacks, Queues, and Trees ..492

Appendices ...524
Bibliography and References ...544
Index ..545

C
iii

Brief Contents

© Oxford University Press. All rights reserved.

 1 INTRODUCTION TO PROGRAMMING,
ALGORITHMS AND FLOWCHARTS 1

1.1 Programs and Programming 1
 System Software 2
 Application Software 2

1.2 Programming Languages 2
 System Programming Languages 3

 Application Programming Languages 3
 Low-level Languages 3
 High-level Languages 5
 1.3 Compiler, Interpreter, Loader, and Linker 6

 Compiling and Executing High-level Language
Programs 6

 Linker 7
 Loader 7
 Linking Loader and Linkage Editor 8
1.4 Program Execution 8
1.5 Fourth Generation Languages 9
1.6 Fifth Generation Languages 10
1.7 Classi cation of Programming 10

 Procedural Languages 10
 Problem-oriented Languages 11
 Non-procedural Languages 11

 1.8 Structured Programming Concept 11
 Top–down Analysis 12

Preface to the Second Edition iii
Preface to the First Edition v

 Modular Programming 12
 Structured Code 13
 The Process of Programming 13

 1.9 Algorithms 14
 What is an Algorithm? 14
 Different Ways of Stating Algorithms 14
 Key Features of an Algorithm and the Step-

form 14
 What are Variables? 16
 Subroutines 17
 Strategy for Designing Algorithms 30

 Tracing an Algorithm to Depict Logic 31
 Speci cation for Converting Algorithms into

Programs 32

 2 BASICS OF C 39
2.1 Introduction 39

 Why Learn C? 40
 The Future of C 40
2.2 Standardizations of C Language 40
2.3 Developing Programs In C 41
2.4 A Simple C Program 45
2.5 Parts of C Program Revisited 47
2.6 Structure of a C Program 48
2.7 Concept of a Variable 49

C
Contents

© Oxford University Press. All rights reserved.

x Contents

 2.8 Data Types in C 50
 2.9 Program Statement 55
 2.10 Declaration 56
 2.11 How Does The Computer Store Data in

Memory? 57
 How Integers are Stored? 57
 How Floats and Doubles are Stored? 58
 2.12 Token 60
 Identi er 60
 Keywords 61
 Constant 61
 Assignment 63
 Initialization 64
 2.13 Operators and Expressions 65
 Arithmetic Operators in C 66
 Relational Operators in C 71
 Logical Operators in C 71
 Bitwise Operators in C 72
 Conditional Operator in C 73
 Comma Operator 73
 Sizeof Operator 74
 Expression Evaluation—Precedence and

Associativity 74
 2.14 Expressions Revisited 77
 2.15 Lvalues and Rvalues 77
 2.16 Type Conversion in C 78
 Type Conversion in Expressions 78
 Conversion by Assignment 79
 Casting Arithmetic Expressions 81
 2.17 Working with Complex Numbers 86

 3 INPUT AND OUTPUT 94
 3.1 Introduction 94
 3.2 Basic Screen and Keyboard I/O in C 95
 3.3 Non-Formatted Input and Output 96
 Single Character Input and Output 96
 Single Character Input 96
 Single Character Output 96
 Additional Single Character Input and Output

Functions 97
 3.4 Formatted Input and Output Functions 100
 Output Function printf () 100
 Input Function scanf () 106

 4 CONTROL STATEMENTS 117
 4.1 Introduction 117
 4.2 Specifying Test Condition Forselection and

Iteration 119

 4.3 Writing Test Expression 119
 Understanding How True and False is Represented

in C 120
 4.4 Conditional Execution and Selection 124
 Selection Statements 124
 The Conditional Operator 131
 The Switch Statement 133
 4.5 Iteration and Repetitive Execution 137
 While Construct 138
 For Construct 143
 do-while Construct 151
 4.6 Which Loop Should be Used? 153
 Using Sentinel Values 153
 Using Prime Read 154
 Using Counter 155
 4.7 Goto Statement 155
 4.8 Special Control Statements 156
 4.9 Nested Loops 159

 5 ARRAYS AND STRINGS 169
 5.1 Introduction 169
 5.2 One-Dimensional Array 170
 Declaration of a One-dimensional Array 171
 Initializing Integer Arrays 173
 Accessing Array Elements 173
 Other Allowed Operations 174
 Internal Representation of Arrays in C 176
 Variable Length Arrays and the C99 changes 177
 Working with One-dimensional Array 177
 5.3 Strings: One-dimensional Character Arrays 182
 Declaration of a String 182
 String Initialization 182
 Printing Strings 183
 String Input 184
 Character Manipulation in the String 190
 String Manipulation 191
 5.4 Multidimensional Arrays 199
 Declaration of a Two-dimensional Array 199
 Declaration of a Three-dimensional Array 199
 Initialization of a Multidimensional Array 199
 Unsized Array Initializations 201
 Accessing Multidimensional Arrays 201
 Working with Two-dimensional Arrays 202
 5.5 Arrays of Strings: Two-dimensional Character

Array 206
 Initialization 206
 Manipulating String Arrays 206

© Oxford University Press. All rights reserved.

Contents xi

 6 FUNCTIONS 214
 6.1 Introduction 214
 6.2 Concept of Function 215
 Why are Functions Needed? 215
 6.3 Using Functions 216
 Function Prototype Declaration 216
 Function De nition 217
 Function Calling 219
 6.4 Call by Value Mechanism 221
 6.5 Working with Functions 221
 6.6 Passing Arrays to Functions 224
 6.7 Scope and Extent 227
 Concept of Global and Local Variables 227
 Scope Rules 229
 6.8 Storage Classes 231
 Storage Class Speci ers for Variables 231
 Storage Class Speci ers for Functions 234
 Linkage 234
 6.9 The Inline Function 234
 6.10 Recursion 235
 What is Needed for Implementing Recursion? 235
 How is Recursion Implemented? 239
 Comparing Recursion and Iteration 241
 6.11 Searching and Sorting 241
 Searching Algorithms 241
 Sorting Algorithms 243
 6.12 Analysis of Algorithms 248
 Asymptotic Notation 250
 Ef ciency of Linear Search 252
 Binary Search Analysis 253
 Analysis of Bubble Sort 254
 Analysis of Quick Sort 255
 Disadvantages of Complexity Analysis 255

 7 POINTERS IN C 268
 7.1 Introduction 268
 7.2 Understanding Memory Addresses 269
 7.3 Address Operator (&) 271
 7.4 Pointer 272
 Declaring a Pointer 272
 Initializing Pointers 274
 Indirection Operator and Dereferencing 276
 7.5 Void Pointer 278
 7.6 Null Pointer 278
 7.7 Use of Pointers 279
 7.8 Arrays and Pointers 282
 One-dimensional Arrays and Pointers 282
 Passing an Array to a Function 285
 Differences Between Array Name and Pointer 286

 7.9 Pointers and Strings 288
 7.10 Pointer Arithmetic 289
 Assignment 290
 Addition or Subtraction with Integers 291
 Subtraction of Pointers 298
 Comparing Pointers 299
 7.11 Pointers to Pointers 300
 7.12 Array of Pointers 302
 7.13 Pointers To an Array 306
 7.14 Two-dimensional Arrays and Pointers 307
 Passing Two-dimensional Array to a Function 309
 7.15 Three-dimensional Arrays 316
 7.16 Pointers to Functions 317
 Declaration of a Pointer to a Function 317
 Initialization of Function Pointers 317
 Calling a Function using a Function Pointer 317
 Passing a Function to another Function 318
 How to Return a Function Pointer 319
 Arrays of Function Pointers 320
 7.17 Dynamic Memory Allocation 320
 Dynamic Allocation of Arrays 323
 Freeing Memory 325
 Reallocating Memory Blocks 327
 Implementing Multidimensional Arraysusing

Pointers 328
 7.18 Offsetting a Pointer 331
 7.19 Memory Leak and Memory Corruption 333
 7.20 Pointer and Const Quali er 334
 Pointer to Constant 334
 Constant Pointers 335
 Constant Parameters 335

 8 USER-DEFINED DATA TYPES AND
VARIABLES 350

 8.1 Introduction 350
 8.2 Structures 351
 Declaring Structures and Structure Variables 351
 Accessing the Members of a Structure 354
 Initialization of Structures 355
 Copying and Comparing Structures 359
 Typedef and its Use in Structure Declarations 361
 Nesting of Structures 362
 Arrays of Structures 363
 Initializing Arrays of Structures 364
 Arrays within the Structure 365
 Structures and Pointers 365
 Structures and Functions 367
 8.3 Union 370
 Declaring a Union and its Members 370

© Oxford University Press. All rights reserved.

xii Contents

 Accessing and Initializing the Members of a
Union 371

 Structure Versus Union 372
 8.4 Enumeration Types 373
 8.5 Bit elds 374

 9 FILES IN C 388
 9.1 Introduction 388
 9.2 Using Files in C 390
 Declaration of File Pointer 390
 Opening a File 391
 Closing and Flushing Files 392
 9.3 Working with Text Files 393
 Character Input and Output 393
 End of File (EOF) 394
 Detecting the End of a File Using the feof()

Function 400
 9.4 Working with Binary Files 401
 9.5 Direct File Input and Output 402
 Sequential Versus Random File Access 403
 9.6 Files of Records 403
 Working with Files of Records 403
 9.7 Random Access to Files of Records 410
 9.8 Other File Management Functions 413
 Deleting a File 413
 Renaming a File 413
 9.9 Low-Level I/O 414

10 LINKED LISTS 423
 10.1 Introduction 423
 10.2 Singly Linked List 425
 Insertion of a Node in a Singly Linked List 430
 Deletion of a Node from a Singly Linked List 434
 Sorting a Singly Linked List 435
 Destroying a Singly Linked List 436
 More Complex Operations on Singly Linked

Lists 437
 10.3 Circular Linked Lists 440
 Appending a Node 441
 Displaying a Circular Linked List 442
 Inserting a Node After a Speci ed Node 442
 Inserting a Node Before a Particular Node 443
 Deleting a Node 444
 Sorting a Circular Linked List 446
 10.4 Doubly Linked List 446
 Operations on Doubly Linked List 447
 Advantages/Disadvantages of DoublyLinked

Lists 450

 10.5 Introduction to Circular Doubly Linked List 450
 10.6 Applications of Linked Lists 451
 Dynamic Storage Management 451
 Garbage Collection and Compaction 452
 10.7 Disadvantages of Linked Lists 454
 10.8 Array Versus Linked List Revisited 454

11 ADVANCED C 460
 11.1 Introduction 460
 11.2 Bitwise Operator 461
 Bitwise and 462
 Bitwise or 463
 Bitwise Exclusive-OR 464
 Bitwise Not 464
 Bitwise Shift Operator 465
 11.3 Command-Line Arguments 467
 11.4 The C Preprocessor 470
 The C Preprocessor Directives 470
 Prede ned Identi ers 474
 11.5 Type Quali er 475
 Const Quali er 476
 Volatile Quali er 478
 Restrict Quali er 479
 11.6 Variable Length Argument List 480
 11.7 Memory Models and Pointers 481

12 STACKS, QUEUES, AND TREES 492
 12.1 Introduction 492
 12.2 Stack 493
 Implementation of Stack 493
 Application of Stack 498
 12.3 Queue 499
 Implementation of Queue 499
 Other Variations of Queue 505
 Applications of Queue 505
 12.4 Tree 506
 Some Basic Tree Terminology 507
 Binary Tree 507
 Traversals of a Binary Tree 509
 Kinds of Binary Trees 511
 Binary Search Tree 511
 Application of Tree 518

Appendices 524
Bibliography and References 544
Index 545

© Oxford University Press. All rights reserved.

1.1 PROGRAMS AND PROGRAMMING
A computer can neither think nor make a decision on
its own. In fact, it is not possible for any computer to
independently analyze a given data and nd a solution on
its own. It needs a program which will convey what is to
be done. A program is a set of logically related instructions
that is arranged in a sequence that directs the computer in
solving a problem.

The process of writing a program is called programming.
It is a necessary and critical step in data processing.
An incorrect program delivers results that cannot be
used. There are two ways by which one can acquire a
program—either purchase an existing program, referred
to as packaged software or prepare a new program from
scratch, in which case it is called customized software.
 Computer software can be broadly classi ed into two
categories: system software and application software.

After reading this chapter, the readers will be able to

 de ne program and programming
 identify system programs and application programs
 get a basic concept of high-, middle-, and low-level languages
 brie y understand compiler, interpreter, linker, and loader functions
 understand algorithms and the key features of an algorithm—sequence, decision, and

repetition
 learn the different ways of stating algorithms—step-form, owchart, etc.
 de ne variables, types of variables, and naming conventions for variables
 decide a strategy for designing algorithms

Learning Objectives

C
Chapter

Introduction to
Programming, Algorithms

and Flowcharts

11

© Oxford University Press. All rights reserved.

2 Programming in C

Computer Software

System Software Application Software

Figure 1.1 Computer software classi cation

1.1.1 System Software

 System software is a collection of programs that interfaces
with the hardware. Some common categories of system
software are described as follows.

Language translator It is a system software that
transforms a computer program written by a user into a
form that can be understood by the machine.

Operating system (OS) This is the most important system
software that is required to operate a computer system.
An operating system manages the computer’s resources
effectively, takes care of scheduling multiple jobs for
execution, and manages the ow of data and instructions
between the input/output units and the main memory. An
operating system has become a part of computer software
with the advent of the third generation computers.
Since then a number of operating systems have been
developed and some have undergone several revisions and
modi cations to achieve better utilization of computer
resources. Advances in computer hardware have helped in
the development of more ef cient operating systems.

System Software

Language
Translator

Operating
System Utilities

Special Purpose
Program

Figure 1.2 Categories of system software

1.1.2 Application Software

 Application software is written to enable the computer
to solve a speci c data processing task. There are two
categories of application software: pre-written software
packages and user application programs.

 A number of powerful application software packages
that do not require signi cant programming knowledge
have been developed. These are easy to learn and use
compared to programming languages. Although these
packages can perform many general and special functions,
there are applications where these packages are found to
be inadequate. In such cases, user application programs are
written to meet the exact requirements. A user application
program may be written using one of these packages or a
programming language. The most important categories of
software packages available are
 ∑ Database management software
 ∑ Spreadsheet software
 ∑ Word processing, Desktop Publishing (DTP), and

presentation software
 ∑ Multimedia software
 ∑ Data communication software
 ∑ Statistical and operational research software

Application Software

Pre-written Software
Packages

User-written Application
Programs

Figure 1.3 Categories of application software

Points to Note

 1. A program is a sequence of logically related instructions
and the process of making it is programming.

 2. A program is a software that is broadly categorized as
system software and application software.

1.2 PROGRAMMING LANGUAGES
To write a computer program, a standard programming
language is used. A programming language is composed
of a set of instructions in a language understandable to the
programmer and recognizable by a computer. Programming
languages can be classi ed as high-level, middle-level, and
low-level. High-level languages such as BASIC, COBOL
(Common Business Oriented Programming Language),
and FORTRAN (Formula Translation Language) are used

© Oxford University Press. All rights reserved.

Introduction to Programming, Algorithms and Flowcharts 3

to write application programs. A middle-level language
such as C is used for writing application and system
programs. A low-level language such as the assembly
language is mostly used to write system programs.
 Low-level programming languages were the rst
category of programming languages to evolve. Gradually,
high-level and middle-level programming languages were
developed and put to use.
 Figure 1.4 depicts the growth in computer languages
since the 1940s. The gure is meant to give some idea
of the times that the different generations appeared, time
scales, and relativity of computer languages to each other
and the world of problem solving.

Human
Oriented

Machine
Oriented

Problem
definition

Fourth Generation
Language

Third Generation
Language

Assembly
Language

Machine
Code

1940 1950 1960 1970 1980 1990
Years

Figure 1.4 Growth of computer languages

1.2.1 System Programming Languages

System programs or softwares are designed to make the
computer easier to use. An example of system software is
an operating system consisting of many other programs that
control input/output devices, memory, processor, schedule
the execution of multiple tasks, etc. To write an operating
system program, the programmer needs instructions to
control the computer’s circuitry as well as manage the
resources of the computer. For example, instructions that
move data from one location of storage to a register of the
processor are required. Assembly language, which has a
one-to-one correspondence with machine code, was the
normal choice for writing system programs like operating
systems. But, today C is widely used to develop system
software.

1.2.2 Application Programming Languages

There are two main categories of application programs:
business programs and scienti c application programs.
Application programs are designed for speci c computer
applications, such as payroll processing and inventory
control. To write programs for payroll processing or other
such applications, the programmer does not need to control
the basic circuitry of a computer. Instead, the programmer
needs instructions that make it easy to input data, produce
output, perform calculations, and store and retrieve data.
Programming languages suitable for such application
programs have the appropriate instructions. Most
programming languages are designed to be good for one
category of applications but not necessarily for the other,
although there are some general-purpose languages that
support both types. Business applications are characterized
by processing of large inputs and high-volume data storage
and retrieval but call for simple calculations. Languages
which are suitable for business program development
must support high-volume input, output, and storage
but do not need to support complex calculations. On the
other hand, programming languages designed for writing
scienti c programs contain very powerful instructions for
calculations but have poor instructions for input, output,
etc. Among the traditionally used programming languages,
COBOL is more suitable for business applications whereas
FORTRAN is more suitable for scienti c applications.

1.2.3 Low-level Languages

A low-level computer programming language is one that
is closer to the native language of the computer, which is
1’s and 0’s.

 Machine language

This is a sequence of instructions written in the form of
binary numbers consisting of 1’s and 0’s to which the
computer responds directly. The machine language is also
referred to as the machine code, although the term is used
more broadly to refer to any program text.
 A machine language instruction generally has three
parts as shown in Fig. 1.5. The rst part is the command or
operation code that conveys to the computer what function

© Oxford University Press. All rights reserved.

4 Programming in C

has to be performed by the instruction. All computers have
operation codes for functions such as adding, subtracting
and moving. The second part of the instruction either
speci es that the operand contains data on which the
operation has to be performed or it speci es that the
operand contains a location, the contents of which have to
be subjected to the operation.

n-bits

q-bits

Operation Code Mode Operand

p-bits r-bits

Figure 1.5 General format of machine language
instruction

 Just as hardware is classi ed into generations based on
technology, computer languages also have a generation
classi cation based on the level of interaction with the
machine. Machine language is considered to be the rst
generation language (1GL).
Advantage of machine language The CPU directly
understands machine instructions, and hence no translation
is required. Therefore, the computer directly starts executing
the machine language instructions, and it takes less execution
time.

Disadvantages of machine language

 ∑ Dif cult to use It is dif cult to understand and de-
velop a program using machine language. For any-
body checking such a program, it would be dif cult
to forecast the output when it is executed. Neverthe-
less, computer hardware recognizes only this type of
instruction code.

 ∑ Machine dependent The programmer has to re-
member machine characteristics while preparing a
program. As the internal design of the computer is
different across types, which in turn is determined by
the actual design or construction of the ALU, CU, and
size of the word length of the memory unit, the ma-
chine language also varies from one type of computer
to another. Hence, it is important to note that after be-
coming pro cient in the machine code of a particular

computer, the programmer may be required to learn
a new machine code and would have to write all the
existing programs again in case the computer system
is changed.

 ∑ Error prone It is hard to understand and remember
the various combinations of 1’s and 0’s representing
data and instructions. This makes it dif cult for a
programmer to concentrate fully on the logic of the
problem, thus frequently causing errors.

 ∑ Dif cult to debug and modify Checking machine
instructions to locate errors are about as tedious as
writing the instructions. Further, modifying such a
program is highly problematic.

 Following is an example of a machine language
program for adding two numbers.

Example

1. Machine Code Comments

 0011 1100 Load A register with value 7

 0000 0111

 0000 0110 Load B register with 10

 0000 1010

 1000 0000 A = A + B

 0011 1010 Store the result into the memory location
whose address is 100 (decimal)

 0110 0110
 0111 0110 Halt processing

 Assembly language

When symbols such as letters, digits, or special characters
are employed for the operation, operand, and other parts
of the instruction code, the representation is called an
assembly language instruction. Such representations are
known as mnemonic codes; they are used instead of binary
codes. A program written with mnemonic codes forms an
assembly language program. This is considered to be a
second generation language (2GL).
 Machine and assembly languages are referred to as
low-level languages since the coding for a problem is at
the individual instruction level. Each computer has its own
assembly language that is dependent upon the internal
architecture of the processor.

© Oxford University Press. All rights reserved.

Introduction to Programming, Algorithms and Flowcharts 5

 An assembler is a translator that takes input in the form
of the assembly language program and produces machine
language code as its output. An instruction word consists
of parts shown in Fig. 1.5 where,
 ∑ the Opcode (Operation Code) part indicates the

operation to be performed by the instruction and
 ∑ the mode and operand parts convey the address of the

data to be found or stored.
 The following is an example of an assembly language
program for adding two numbers X and Y and storing the
result in some memory location.

Example

2. Mnemonics Comments Register/ Location

 LD A, 7 Load register A with 7 A 7

 LD B, 10 Load register B with 10 B 10

 ADD A, B A + B: Add contents of A 17

 A with contents of B and
 store result in register A
 LD (100), A Save the result in the main
 memory location 100 100 17

 HALT Halt process

 From this example program, it is clear that using
mnemonics such as LD, ADD, and HALT, the readability
of the program has improved signi cantly.
 An assembly language program cannot be executed by
a machine directly as it is not in a binary machine language
form. An assembler is needed to translate an assembly
language program into the object code, which can then be
executed by the machine. The object code is the machine
language code. This is illustrated in Fig. 1.6.

Assembly
Language
Program

Source Code Object Code

Assembler
Object Code
in Machine
Language

Figure 1.6 Assembler

Advantage of assembly language Writing a program in
assembly language is more convenient than writing one

in machine language. Instead of binary sequence, as in
machine language, a program in assembly language is
written in the form of symbolic instructions. This gives
the assembly language program improved readability.

Disadvantages of assembly language

 ∑ Assembly language is speci c to a particular machine
architecture, i.e., machine dependent. Assembly
languages are designed for a speci c make and model
of a microprocessor. This means that assembly language
programs written for one processor will not work on a
different processor if it is architecturally different. That
is why an assembly language program is not portable.

 ∑ Programming is dif cult and time consuming.
 ∑ The programmer should know all about the logical

structure of the computer.

1.2.4 High-level Languages

High-level programming languages such as COBOL,
FORTRAN, and BASIC were mentioned earlier in the
chapter. Such languages have instructions that are similar
to human languages and have a set grammar that makes it
easy for a programmer to write programs and identify and
correct errors in them. To illustrate this point, a program
written in BASIC, to obtain the sum of two numbers, is
shown below.

Example

3. Stmt. No. Program stmnt Comments
 10 LET X = 7 Put 7 into X
 20 LET Y = 10 Put 10 into Y
 30 LET SUM = X + Y Add values in X and Y and
 put in SUM.
 40 PRINT SUM Output the content in SUM.
 50 END Stop

 The time and cost of creating machine and assembly
language programs were quite high. This motivated the
development of high-level languages.

Advantages of high-level programming languages

Readability Programs written in these languages are
more readable than those written in assembly and machine
languages.

© Oxford University Press. All rights reserved.

6 Programming in C

Portability High-level programming languages can be
run on different machines with little or no change. It
is, therefore, possible to exchange software, leading to
creation of program libraries.

Easy debugging Errors can be easily detected and removed.

Ease in the development of software Since the commands
of these programming languages are closer to the English
language, software can be developed with ease.
 High-level languages are also called third generation
languages (3GLs).

Points to Note

 1. There are two kinds of programming languages --- the
low-level and high level.

 2. The high level programming language is easy to read,
portable, allows swift development of programs and is
easy to debug.

 3. The low level programming language is not portable,
takes more time to develop programs and debugging
is dif cult.

1.3 COMPILER, INTERPRETER, LOADER, AND
LINKER

For executing a program written in a high-level language,
it must be rst translated into a form the machine can
understand. This is done by a software called the compiler.
The compiler takes the high-level language program as
input and produces the machine language code as output
for the machine to execute the program . This is illustrated
in Fig. 1.7.

Source
Program in
High Level

Compiler
Object Code
in Machine
Language

Figure 1.7 Compiler action

 During the process of translation, the compiler reads
the source program statement- wise and checks for syntax
errors. In case of any error, the computer generates a
printout of the same. This action is known as diagnostics.
 There is another type of software that also does
translation. This is called an interpreter.

 The compiler and interpreter have different approaches
to translation. Table 1.1 lists the differences between a
compiler and an interpreter.

Table 1.1 Differences between a compiler and an Interpreter

Compiler Interpreter

Scans the entire program
before translating it into
machine code.

Translates and executes the
program line by line.

Converts the entire
program to machine code
and executes program only
when all the syntax errors
are removed.

The interpreter executes one
line at a time, after checking
and correcting its syntax
errors and then converting it to
machine code.

Slow in debugging or
removal of mistakes from a
program.

Good for fast debugging.

Program execution time is
less.

Program execution time is
more.

1.3.1 Compiling and Executing High-level Language
Programs

The compiling process consists of two steps: the analysis of
the source program and the synthesis of the object program
in the machine language of the speci ed machine.
 The analysis phase uses the precise description of
the source programming language. A source language is
described using lexical rules, syntax rules, and semantic
rules.
 Lexical rules specify the valid syntactic elements or
words of the language. Syntax rules specify the way in
which valid syntactic elements are combined to form
the statements of the language. Syntax rules are often
described using a notation known as BNF (Backus Naur
Form) grammar. Semantic rules assign meanings to valid
statements of the language.
 The steps in the process of translating a source program
in a high-level language to executable code are depicted in
Fig. 1.8.
 The rst block is the lexical analyzer. It takes successive
lines of a program and breaks them into individual
lexical items namely, identi er, operator delimiter, etc.
and attaches a type tag to each of these. Beside this, it
constructs a symbol table for each identi er and nds the
internal representation of each constant. The symbol table
is used later to allocate memory to each variable.

© Oxford University Press. All rights reserved.

Introduction to Programming, Algorithms and Flowcharts 7

Lexical
Rules

Syntax
Rules

Semantic
Rules

Object Code

Object Code
from Other

Compilations

Intermediate
Code

Source
Program

Lexical
Analysis

Syntactic
Analysis

Semantic
Analysis

Code
Generator

Symbol
Table

Other
Tables

Linker and
Loader

Executable
Code

Figure 1.8 The process of compilation

 The second stage of translation is called syntax analysis
or parsing. In this phase, expressions, declarations, and
other statements are identi ed by using the results of lexical
analysis. Syntax analysis is done by using techniques
based on formal grammar of the programming language.
 In the semantic analysis phase, the syntactic units
recognized by the syntax analyzer are processed. An
intermediate representation of the nal machine language
code is produced.
 The last phase of translation is code generation, when
optimization to reduce the length of machine language
program is carried out. The output of the code generator
is a machine level language program for the speci ed
computer. If a subprogram library is used or if some
subroutines are separately translated and compiled, a nal
linking and loading step is needed to produce the complete
machine language program in an executable form.
 If subroutines were compiled separately, then the address
allocation of the resulting machine language instructions
would not be nal. When all routines are connected and
placed together in the main memory, suitable memory
addresses are allocated. The linker’s job is to nd the
correct main memory locations of the nal executable
program. The loader then places the executable program
in memory at its correct address.

 Therefore, the execution of a program written in high-
level language involves the following steps:
 1. Translation of the program resulting in the object

program.
 2. Linking of the translated program with other object

programs needed for execution, thereby resulting in a
binary program.

 3. Relocation of the program to execute from the speci c
memory area allocated to it.

 4. Loading of the program in the memory for the purpose
of execution.

1.3.2 Linker

Linking resolves symbolic references between object
programs. It makes object programs known to each other.
The features of a programming language in uence the
linking requirements of a program. In FORTRAN/COBOL,
all program units are translated separately. Hence, all
subprogram calls and common variable references require
linking. PASCAL procedures are typically nested inside
the main program. Hence, procedure references do not
require linking; they can be handled through relocation.
References to built-in functions however require linking.
In C, les are translated separately. Thus, only function
calls that cross le boundaries and references to global
data require linking. Linking makes the addresses of
programs known to each other so that transfer of control
from one subprogram to another or a main program takes
place during execution.

Relocation

 Relocation means adjustment of all address-dependent
locations, such as address constant, to correspond to the
allocated space, which means simple modi cation of the
object program so that it can be loaded at an address
different from the location originally speci ed. Relocation
is more than simply moving a program from one area to
another in the main memory. It refers to the adjustment
of address elds. The task of relocation is to add some
constant value to each relative address in the memory
segment.

1.3.3 Loader

Loading means physically placing the machine instructions
and data into main memory, also known as primary storage
area.

© Oxford University Press. All rights reserved.

8 Programming in C

 A loader is a system program that accepts object programs
and prepares them for execution and initiates the execution
(see Fig. 1.9). The functions performed by the loader are :
 ∑ Assignment of load-time storage area to the program
 ∑ Loading of program into assigned area
 ∑ Relocation of program to execute properly from its

load time storage area
 ∑ Linking of programs with one another

Source
Program Data

Result

Translator Linker Loader
Binary

Program

Data Flow

Control Flow

Object
Module

Binary
Program

Figure 1.9 A schematic of program execution

 Thus, a loader is a program that places a program’s
instructions and data into primary storage locations. An
absolute loader places these items into the precise locations
indicated in the machine language program. A relocating
loader may load a program at various places in primary
storage depending on the availability of primary storage
area at the time of loading. A program may be relocated
dynamically with the help of a relocating register. The
base address of the program in primary storage is placed
in the relocating register. The contents of the relocation
register are added to each address developed by a running
program. The user is able to execute the program as if it
begins at location zero. At execution time, as the program
runs, all address references involve the relocation register.
This allows the program to reside in memory locations
other than those for which it was translated to occupy.

1.3.4 Linking Loader and Linkage Editor

User programs often contain only a small portion
of the instructions and data needed to solve a given
problem. Large subroutine libraries are provided so
that a programmer wanting to perform certain common

operations may use system-supplied routines to do so.
Input/output, in particular, is normally handled by routines
outside the user program. Hence, the machine language
program produced by the translator must normally be
combined with other machine language programs residing
within the library to form a useful execution unit. This
process of program combination is called linking and the
software that performs this operation is variously known
as a linking loader or a linkage editor. Linking is done
after object code generation, prior to program execution
time.
 At load time, a linking loader combines whatever
programs are required and loads them directly into primary
storage. A linkage editor also performs the same task,
but it creates a load image that it preserves on secondary
storage for future reference. Whenever a program is to be
executed, the load image produced by the linkage editor
may be loaded immediately without the overhead of
recombining program segments.

Points to Note

 1. A compiler converts a high-level language program
into executable machine instructions after the removal
of syntax errors.

 2. An interpreter executes each high-level language pro-
gram one line at a time after removing its syntax error
and converting it into machine instructions.

 3. A linker makes the addresses of programs known to
each other so that transfer of control from one subpro-
gram to another or a main program takes place prop-
erly during execution.

 4. A loader is a program that places a program’s execut-
able machine instructions and data into primary stor-
age locations.

1.4 PROGRAM EXECUTION
The primary memory of a computer, also called the
Random Access Memory, is divided into units known as
words.
 Depending on the computer, a word of memory may
be two, four, or even eight bytes in size. Each word is
associated with a unique address, which is a positive
integer that helps the CPU to access the word. Addresses
increase consecutively from the top of the memory to its
bottom. When a program is compiled and linked, each
instruction and each item of data is assigned an address. At
execution time, the CPU nds instructions and data from
these addresses.

© Oxford University Press. All rights reserved.

Introduction to Programming, Algorithms and Flowcharts 9

 The PC, or program counter, is a CPU register that
holds the address of the next instruction to be executed
in a program. In the beginning, the PC holds the address
of the zeroth instruction of the program. The CPU fetches
and then executes the instruction found at this address.
The PC is meanwhile incremented to the address of the
next instruction in the program. Having executed one
instruction, the CPU goes back to look up the PC where
it nds the address of the next instruction in the program.
This instruction may not necessarily be in the next
memory location. It could be at quite a different address.
For example, the last statement could have been a go to
statement, which unconditionally transfers control to a
different point in the program; or there may have been a
branch to a function subprogram. The CPU fetches the
contents of the words addressed by the PC in the same
amount of time, whatever their physical locations. The
CPU has random access capability to any and all words
of the memory, no matter what their addresses. Program
execution proceeds in this way until the CPU has processed
the last instruction.

Points to Note

 1. When a program is compiled and linked, each instruction
and each item of data is assigned an address.

 2. During program execution, the CPU nds instructions
and data from the assigned addresses.

1.5 FOURTH GENERATION LANGUAGES
The Fourth Generation Language is a non-procedural
language that allows the user to simply specify what the
output should be without describing how data should
be processed to produce the result. Fourth generation
programming languages are not as clearly de ned as are
the other earlier generation languages. Most people feel
that a fourth generation language, commonly referred to
as 4GL, is a high-level language that requires signi cantly
fewer instructions to accomplish a particular task than
does a third generation language. Thus, a programmer
should be able to write a program faster in 4GL than in a
third generation language.
 Most third generation languages are procedural
languages. That is, the programmer must specify the steps
of the procedure the computer has to follow in a program.
By contrast, most fourth generation languages are non-
procedural languages. The programmer does not have

to give the details of the procedure in the program, but
specify, instead, what is wanted. For example, assume
that a programmer needs to display some data on the
screen, such as the address of a particular employee, say
MANAS, from the EMP le. In a procedural language, the
programmer would have to write a series of instructions
using the following steps:
 Step 1: Get a record from the EMP le.
Step 2: If this is the record for MANAS, display the

address.
Step 3: If this is not the record for MANAS, go to

step 1, until end-of- le.
 In a non-procedural language (4GL), however, the
programmer would write a single instruction that says:

 Get the address of MANAS from EMP le.

 Major fourth generation languages are used to get
information from les and databases, as in the previous
example, and to display or print the information. These
fourth generation languages contain a query language,
which is used to answer queries or questions with data
from a database. The following example shows a query in
a common query language, SQL.

 SELECT ADDRESS FROM EMP WHERE NAME =
‘MANAS’

 End user-oriented 4GLs are designed for applications
that process low data volumes. These 4GLs run on
mainframe computers and may be employed either by
information users or by the programmers. This type of 4GL
may have its own internal database management software
that in turn interacts with the organization’s DBMS
package. People who are not professional programmers
use these products to query databases, develop their
own custom-made applications, and generate their own
reports with minimum amount of training. For example,
ORACLE offers a number of tools suitable for the end
user.
 Some fourth generation languages are used to produce
complex printed reports. These languages contain certain
types of programs called generators. With a report generator,
the programmer speci es the headings, detailed data,
and totals needed in a report. Thus, the report generator
produces the required report using data from a le. Other
fourth generation languages are used to design screens
for data input and output and for menus. These languages

© Oxford University Press. All rights reserved.

10 Programming in C

contain certain types of programs called screen painters.
The programmer designs the screen to look as desired and,
therefore, it can be said that the programmer paints the
screen using the screen painter program. Fourth generation
languages are mostly machine independent. Usually they
can be used on more than one type of computer. They are
mostly used for of ce automation or business applications,
and not for scienti c programs. Some fourth generation
languages are designed to be easily learnt and employed
by end users.

Advantages of 4GLs

 ∑ Programming productivity is increased. One line of
a 4GL code is equivalent to several lines of a 3GL
code.

 ∑ System development is faster.
 ∑ Program maintenance is easier.
 ∑ End users can often develop their own applications.
 ∑ Programs developed in 4GLs are more portable than

those developed in other generation languages.
 ∑ Documentation is of improved order because most

4GLs are self-documenting.

 The differences between third generation languages
and fourth generated languages are shown in Table 1.2.

Table 1.2 3GL vs 4GL

3GL 4GL

Meant for use by professional
programmers

May be used by non-
professional programmers
as well as by professional
programmers.

Requires speci cations of
how to perform a task

Requires speci cations of
what task to perform.

All alternatives must be
speci ed

System determines how to
perform the task.

Execution time is less Default alternatives are built-
in. User need not specify
these alternatives.

Requires large number of
procedural instructions Code
may be dif cult to read,
understand, and maintain by
the user

Requires fewer instructions.

Typically, le oriented Dif cult to debug

1.6 FIFTH GENERATION LANGUAGES
Natural languages represent the next step in the
development of programming languages belonging to
 fth generation languages. Natural language is similar

to query language, with one difference: it eliminates
the need for the user or programmer to learn a speci c
vocabulary, grammar, or syntax. The text of a natural-
language statement resembles human speech closely. In
fact, one could word a statement in several ways, perhaps
even misspelling some words or changing the order of the
words, and get the same result. Natural language takes the
user one step further away from having to deal directly
and in detail with computer hardware and software.
These languages are also designed to make the computer
smarter—that is, to simulate the human learning process.
Natural languages already available for microcomputers
include CLOUT, Q & A, and SAVY RETRIEVER (for use
with databases) and HAL(Human Access Language) for
use with LOTUS.

Points to Note

 1. Third generation programming language speci es how
to perform a task using a large number of procedural
instructions and is le oriented.

 2. Fourth generation programming language speci es
what task has to be performed using fewer instructions
and is database oriented.

 3. Fifth generation programming language resembles
human speech and eliminates the need for the user or
programmer to learn a speci c vocabulary, grammar,
or syntax.

1.7 CLASSIFICATION OF PROGRAMMING

 LANGUAGES
1.7.1 Procedural Languages

 Algorithmic languages These are high-level languages
designed for forming convenient expression of procedures,
used in the solution of a wide class of problems. In this
language, the programmer must specify the steps the
computer has to follow while executing a program. Some
of languages that fall in the category are C, COBOL, and
FORTRAN.

 Object-oriented language The basic philosophy of object-
oriented programming is to deal with objects rather than
functions or subroutines as in strictly algorithmic languages.

© Oxford University Press. All rights reserved.

Introduction to Programming, Algorithms and Flowcharts 11

Objects are self-contained modules that contain data as well
as the functions needed to manipulate the data within the
same module. In a conventional programming language,
data and subroutines or functions are separate. In object-
oriented programming, subroutines as well as data are
locally de ned in objects. The difference affects the way a
programmer goes about writing a program as well as how
information is represented and activated in the computer.
The most important object-oriented programming features
are

 ∑ abstraction
 ∑ encapsulation and data hiding
 ∑ polymorphism
 ∑ inheritance
 ∑ reusable code

 C++, JAVA, SMALLTALK, etc. are examples of object-
oriented languages.

Programming Language

High-level
Language

Low-level
Language

Procedural Non-procedural Problem-
oriented

Machine
Language

Assembly
Language

Algorithmic
(

)
COBOL,

FORTRAN, C

Numerical
()MATLAB

Functional
()LISP, ML

Object
Oriented
(

)
C++, JAVA,

SMALLTALK

Symbolic
()MATHEMATICA

Logic Based
()PROLOG

Scripting
()VB, PERL

Publishing
()LATEX

Fig. 1.10 Programming language classi cation

 Scripting languages These languages assume that
a collection of useful programs, each performing a
task, already exists. It has facilities to combine these
components to perform a complex task. A scripting
language may thus be thought of as a glue language,
which sticks a variety of components together. One of
the earliest scripting languages is the UNIX shell. Now
there are several scripting languages such as VB script
and Perl.

1.7.2 Problem-oriented Languages

These are high-level languages designed for developing a
convenient expression of a given class of problems.

1.7.3 Non-procedural Languages

 Functional (applicative) languages These functional
languages solve a problem by applying a set of functions
to the initial variables in speci c ways to get the answer.
The functional programming style relies on the idea of
function application rather than on the notion of variables
and assignments. A program written in a functional
language consists of function calls together with arguments
to functions. LISP, ML, etc. are examples of functional
languages.

 Logic-based programming language A logic program
is expressed as a set of atomic sentences, known as fact,
and horn clauses, such as if-then rules. A query is then
posed. The execution of the program now begins and the
system tries to nd out if the answer to the query is true or
false for the given facts and rules. Such languages include
PROLOG.

Points to Note

 1. Programming languages can be categorized as high-
level or low-level.

 2. High-level languages are classi ed as procedural, non-
procedural and problem-oriented languages. Programs
in high-level languages are easy to prepare and debug.
Such languages are not machine oriented.

 3. Low-level languages are machine oriented languages.

1.8 STRUCTURED PROGRAMMING CONCEPT
In 1968, computer scientist Edsger Dijkstra of Netherlands
published a letter to the editor in the journal of the Association
of Computing Machinery with the title ‘Go To statement
considered harmful’. goto is a command available in most
programming languages to transfer a control to a particular
statement. For three decades, Dijkstra had been crusading
for a better way of programming—a systematic way to
organize programs—called structured programming.
 Structured programming has been called a revolution
in programming and is considered as one of the most
important advancements in software in the past two
decades. Both academic and industrial professionals
are inclined towards the philosophy and techniques of
structured programming. Today, it can be safely said that

© Oxford University Press. All rights reserved.

12 Programming in C

virtually all software developers acknowledge the merits
of the structured programming approach and use it in
software development.
 There is no standard de nition of structured programs
available but it is often thought to be programming
without the use of a goto statement. Indeed, structured
programming does discourage the frequent use of goto but
there is more to it than that.
 Structured programming is:
 ∑ concerned with improving the programming process

through better organization of programs and better
programming notation to facilitate correct and clear
description of data and control structure.

 ∑ concerned with improved programming languages
and organized programming techniques which should
be understandable and therefore, more easily modi -
able and suitable for documentation.

 ∑ more economical to run because good organization
and notation make it easier for an optimizing com-
piler to understand the program logic.

 ∑ more correct and therefore more easily debugged,
because general correctness theorems dealing with
structures can be applied to proving the correctness
of programs.

 Structured programming can be de ned as a
 ∑ top–down analysis for program solving
 ∑ modularization for program structure and organization
 ∑ structured code for individual modules

1.8.1 Top–Down Analysis

A program is a collection of instructions in a particular
language that is prepared to solve a speci c problem.
For larger programs, developing a solution can be very
complicated. From where should it start? Where should
it terminate? Top-down analysis is a method of problem
solving and problem analysis. The essential idea is to
subdivide a large problem into several smaller tasks or
parts for ease of analysis.
 Top-down analysis, therefore, simpli es or reduces the
complexity of the process of problem solving. It is not
limited by the type of program. Top-down analysis is a
general method for attending to any problem. It provides a
strategy that has to be followed for solving all problems.
 There are two essential ideas in top-down analysis:
 ∑ subdivision of a problem
 ∑ hierarchy of tasks

 Subdivision of a problem means breaking a big problem
into two or more smaller problems. Therefore, to solve
the big problem, rst these smaller problems have to be
solved.
 Top-down analysis does not simply divide a problem
into two or more smaller problems.
 It goes further than that. Each of these smaller problems
is further subdivided. This process continues downwards,
creating a hierarchy of tasks, from one level to the next,
until no further break up is possible.
 The four basic steps to top-down analysis are as follows:
 Step 1: De ne the complete scope of the problem to

determine the basic requirement for its solution.
Three factors must be considered in the de nition
of a programming problem.

 ∑ Input: What data is required to be processed
by the program?

 ∑ Process: What must be done with the input
data? What type of processing is required?

 ∑ Output: What information should the program
produce? In what form should it be presented?

Step 2: Based on the de nition of the problem, divide the
problem into two or more separate parts.

Step 3: Carefully de ne the scope of each of these
separate tasks and subdivide them further, if
necessary, into two or more smaller tasks.

Step 4: Repeat step 3. Every step at the lowest level
describes a simple task, which cannot be broken
further.

1.8.2 Modular Programming

 Modular programming is a program that is divided into
logically independent smaller sections, which can be written
separately. These sections, being separate and independent
units, are called modules.
 ∑ A module consists of a series of program instructions

or statements in some programming language.
 ∑ A module is clearly terminated by some special

markers required by the syntax of the language. For
example, a BASIC language subroutine is terminated
by the return statement.

 ∑ A module as a whole has a unique name.
 ∑ A module has only one entry point to which control

is transferred from the outside and only one exit point
from which control is returned to the calling module.

© Oxford University Press. All rights reserved.

Introduction to Programming, Algorithms and Flowcharts 13

 The following are some advantages of modular
programming.

 ∑ Complex programs may be divided into simpler and
more manageable elements.

 ∑ Simultaneous coding of different modules by several
programmers is possible.

 ∑ A library of modules may be created, and these
modules may be used in other programs as and when
needed.

 ∑ The location of program errors may be traced to a
particular module; thus, debugging and maintenance
may be simpli ed.

1.8.3 Structured Code

After the top-down analysis and design of the modular
structure, the third and nal phase of structured
programming involves the use of structured code.
Structured programming is a method of coding, i.e., writing
a program that produces a well-organized module.
 A high-level language supports several control
statements, also called structured control statements or
structured code, to produce a well-organized structured
module. These control statements represent conditional
and repetitive type of executions. Each programming
language has different syntax for these statements.
 In C, the if and case statements are examples of
conditional execution whereas for, while, and do...while
statements represent repetitive execution. In BASIC, for-
next and while-wend are examples of repetitive execution.
Let us consider the goto statement of BASIC, which is
a simple but not a structured control statement. The goto
statement can break the normal ow of the program
and transfer control to any arbitrary point in a program.
A module that does not have a normal ow control is
unorganized and unreadable.
 The following example is a demonstration of a program
using several goto statements. Note that at line numbers 20,
60, and 80, the normal ow control is broken. For example,
from line number 60, control goes back to line 40 instead
of line 70 in case value of (R – G) is less than 0.001.
 10 INPUT X
 20 IF X < 0 THEN GOTO 90
 30 G = X/2
 40 R = X/G
 50 G = (R + G)/2
 60 IF ABS(R - G) < 0.001 THEN GOTO 40
 70 PRINT G

 80 GOTO 100
 90 PRINT INVALID INPUT”

 100 END

 The structured version of this program using while-
wend statement is given below.

 INPUT X
 IF X > 0
 THEN
 G = X/2
 R = X/G
 WHILE ABS (R – G) < 0.001
 R = X/G
 G = (R + G)/2
 WEND
 PRINT G
 ELSE
 PRINT “INVALID INPUT”
 END

 Now if there is no normal break of control ow, gotos
are inevitable in unstructured languages but they can be
and should be always avoided while using structured
programs except in unavoidable situations.

1.8.4 The Process of Programming

The job of a programmer is not just writing program
instructions. The programmer does several other additional
jobs to create a working program. There are some logical
and sequential job steps which the programmer has to
follow to make the program operational.
These are as follows:
 1. Understand the problem to be solved
 2. Think and design the solution logic
 3. Write the program in the chosen programming

language
 4. Translate the program to machine code
 5. Test the program with sample data
 6. Put the program into operation
 The rst job of the programmer is to understand the
problem. To do that the requirements of the problem should
be clearly de ned. And for this, the programmer may have
to interact with the user to know the needs of the user. Thus
this phase of the job determines the ‘what to’ of the task.
 The next job is to develop the logic of solving the
problem. Different solution logics are designed and the
order in which these are to be used in the program are
de ned. Hence, this phase of the job speci es the ‘how to’
of the task.

© Oxford University Press. All rights reserved.

14 Programming in C

 Once the logics are developed, the third phase of the
job is to write the program using a chosen programming
language. The rules of the programming language have to
be observed while writing the program instructions.
 The computer recognizes and works with 1’s and 0’s.
Hence program instructions have to be converted to 1’s
and 0’s for the computer to execute it. Thus, after the
program is written, it is translated to the machine code,
which is in 1’s and 0’s with the help of a translating
program.
 Now, the program is tested with dummy data. Errors in
the programming logic are detected during this phase and
are removed by making necessary changes in either the
logic or the program instructions.
 The last phase is to make the program operational. This
means, the program is put to actual use. Errors occurring
in this phase are recti ed to nally make the program work
to the user’s satisfaction.

Points to Note

 1. Structured programming involves top–down analysis
for program solving, modularization of program structure
and organizing structured code for individual module.

 2. Top-down analysis breaks the whole problem into
smaller logical tasks and de nes the hierarchical link
between the tasks.

 3. Modularization of program structure means making
the small logical tasks into independent program
modules that carries out the desired tasks.

 4. Structured coding is structured programming which
consists of writing a program that produces a well-
organized module.

1.9 ALGORITHMS

1.9.1 What is an Algorithm?

Computer scientist Niklaus Wirth stated that
 Program = Algorithms + Data
 An algorithm is a part of the plan for the computer
program. In fact , an algorithm is ‘an effective procedure
for solving a problem in a nite number of steps’.
 It is effective, which means that an answer is found
and it has a nite number of steps. A well-designed
algorithm will always provide an answer; it may not be
the desired answer but there will be an answer. It may be
that the answer is that there is no answer. A well- designed
algorithm is also guaranteed to terminate.

1.9.2 Different Ways of Stating Algorithms

Algorithms may be represented in various ways. There are
four ways of stating algorithms.
These are as follows:
 ∑ Step-form
 ∑ Pseudo-code
 ∑ Flowchart
 ∑ Nassi-Schneiderman
 In the step form representation, the procedure of solving
a problem is stated with written statements. Each statement
solves a part of the problem and these together complete
the solution. The step-form uses just normal language to
de ne each procedure. Every statement, that de nes an
action, is logically related to the preceding statement. This
algorithm has been discussed in the following section with
the help of an example.
 The pseudo-code is a written form representation of the
algorithm. However it differs from the step form as it uses
a restricted vocabulary to de ne its action of solving the
problem. One problem with human language is that it can
seem to be imprecise. But the pseudo-code, which is in
human language, tends toward more precision by using a
limited vocabulary.
 Flowchart and Nassi-Schneiderman are graphically
oriented representation forms. They use symbols and
language to represent sequence, decision, and repetition
actions. Only the owchart method of representing
the problem solution has been explained with several
examples. The Nassi-Schneiderman technique is beyond
the scope of this book.

Points to Note

 1. An algorithm is an effective procedure for solving a
problem in a nite number of steps.

 2. A program is composed of algorithm and data.

 3. The four common ways of representing an algorithm
are the Step-form, Pseudo-code, Flowchart and Nassi-
Schneiderman.

1.9.3 Key Features of an Algorithm and the Step-form

Here is an example of an algorithm, for making a pot of tea.
 1. If the kettle does not contain water, then ll the

kettle.
 2. Plug the kettle into the power point and switch it on.
 3. If the teapot is not empty, then empty the teapot.

© Oxford University Press. All rights reserved.

Introduction to Programming, Algorithms and Flowcharts 15

 The rst form of the decision if proposition then process
has a null else, that is, there is no else.

The repetition constructs— repeat and while

Repetition can be implemented using constructs like the
repeat loop, while loop, and if.. then .. goto .. loop.
 The Repeat loop is used to iterate or repeat a process or
sequence of processes until some condition becomes true.
It has the general form:
 Repeat
 Process1
 Process2

 ………..
 ProcessN
 Until proposition
Here is an example.
 Repeat
 Fill water in kettle
 Until kettle is full
 The process is ‘Fill water in kettle,’ the proposition is
‘kettle is full’.
 The Repeat loop does some processing before testing
the state of the proposition.
What happens though if in the above example the kettle
is already full? If the kettle is already full at the start of
the Repeat loop, then lling more water will lead to an
over ow.
 This is a drawback of the Repeat construct.
 In such a case the while loop is more appropriate. The
above example with the while loop is shown as follows:
 while kettle is not full
 ll water in kettle
 Since the decision about the kettle being full or not is
made before lling water, the possibility of an over ow
is eliminated. The while loop nds out whether some
condition is true before repeating a process or a sequence
of processes.
 If the condition is false, the process or the sequence of
processes is not executed. The general form of while loop
is:
 while proposition
 begin

 Process 1

 4. Place tea leaves in the teapot.
 5. If the water in the kettle is not boiling, then go to step 5.
 6. Switch off the kettle.
 7. Pour water from the kettle into the teapot.
 It can be seen that the algorithm has a number of steps
and that some steps (steps 1, 3, and 5) involve decision
making and one step (step 5 in this case) involves repetition,
in this case the process of waiting for the kettle to boil.
 From this example, it is evident that algorithms show
these three features:
 ∑ Sequence (also known as process)
 ∑ Decision (also known as selection)
 ∑ Repetition (also known as iteration or looping)
 Therefore, an algorithm can be stated using three basic
constructs: sequence, decision, and repetition.

Sequence

Sequence means that each step or process in the algorithm
is executed in the speci ed order. In the above example,
each process must be in the proper place otherwise the
algorithm will fail.

The decision constructs— if ... then, if ... then ... else ...

In algorithms the outcome of a decision is either true or
false; there is no state in between.
The outcome of the decision is based on some condition
that can only result in a true or false value. For example,
 if today is Friday then collect pay
is a decision and the decision takes the general form:
 if proposition then process
 A proposition, in this sense, is a statement, which can
only be true or false. It is either true that ‘today is Friday’
or it is false that ‘today is not Friday’. It can not be both
true and false. If the proposition is true, then the process
or procedure that follows the then is executed. The deci-
sion can also be stated as:
 if proposition
 then process1
 else process2
 This is the if … then … else … form of the decision.
This means that if the proposition is true then execute
process1, else, or otherwise, execute process2.

© Oxford University Press. All rights reserved.

16 Programming in C

 Process 2
 ………..
 ………...
 Process N
 end

 The if .. then goto .. is also used to repeat a process
or a sequence of processes until the given proposition
is false. In the kettle example, this construct would be
implemented as follows:
 1. Fill some water in kettle
 2. if kettle not full then goto 1
 So long as the proposition ‘kettle not full’ is true the
process, ‘ ll some water in kettle’ is repeated. The general
form of if .. then goto .. is:
 Process1
 Process2
 ……….
 ……….
 ProcessN
 if proposition then goto Process1

Termination

The de nition of algorithm cannot be restricted to
procedures that eventually nish. Algorithms might also
include procedures that could run forever without stopping.
Such a procedure has been called a computational method
by Knuth or calculation procedure or algorithm by
Kleene. However, Kleene notes that such a method must
eventually exhibit ‘some object.’ Minsky (1967) makes
the observation that, if an algorithm has not terminated,
then how can the following question be answered: “Will
it terminate with the correct answer?” Thus the answer is:
undecidable. It can never be known, nor can the designer
do an analysis beforehand to nd it out. The analysis of
algorithms for their likelihood of termination is called
termination analysis.

Correctness

The prepared algorithm needs to be veri ed for its
correctness. Correctness means how easily its logic can be
argued to meet the algorithm’s primary goal. This requires
the algorithm to be made in such a way that all the elements
in it are traceable to the requirements.
 Correctness requires that all the components like the
data structures, modules, external interfaces, and module
interconnections are completely speci ed.

 In other words, correctness is the degree to which an
algorithm performs its speci ed function. The most common
measure of correctness is defects per Kilo Lines of Code
(KLOC) that implements the algorithm, where defect is
de ned as the veri ed lack of conformance to requirements.

Points to Note

 1. The key features of an algorithm are sequence, selection
and repetition.

 2. The stepwise form has sequence, selection and repetition
constructs.

 3. Termination means the action of closing. A well-designed
algorithm has a termination.

 4. Correctness of algorithm means how easily its logic
can be argued to meet the algorithm’s primary goal.

1.9.4 What are Variables?

So long, the elements of algorithm have been discussed.
But a program comprises of algorithm and data. Therefore,
it is now necessary to understand the concept of data. It
is known that data is a symbolic representation of value
and that programs set the context that gives data a proper
meaning. In programs, data is transformed into information.
The question is, how is data represented in programs?
 Almost every algorithm contains data and usually
the data is ‘contained’ in what is called a variable. The
variable is a container for a value that may vary during the
execution of the program. For example, in the tea-making
algorithm, the level of water in the kettle is a variable, the
temperature of the water is a variable, and the quantity of
tea leaves is also a variable.
 Each variable in a program is given a name, for
example,
 ∑ Water_Level
 ∑ Water_Temperature
 ∑ Tea_Leaves_Quantity
and at any given time the value, which is represented by
Water_Level, for instance, may be different to its value at
some other time. The statement
 if the kettle does not contain water then ll the
kettle could also be written as
 if Water_Level is 0 then ll the kettle
or
 if Water_Level = 0 then ll the kettle
 At some point Water_Level will be the maximum value,
whatever that is, and the kettle will be full.

© Oxford University Press. All rights reserved.

Introduction to Programming, Algorithms and Flowcharts 17

Variables and data types

The data used in algorithms can be of different types. The
simplest types of data that an algorithm might use are
 ∑ numeric data, e.g., 12, 11.45, 901, etc.
 ∑ alphabetic or character data such as ‘A’, ‘Z’, or ‘This

is alphabetic’
 ∑ logical data, that is, propositions with true/false

values

Naming of variables

One should always try to choose meaningful names for
variables in algorithms to improve the readability of the
algorithm or program. This is particularly important in
large and complex programs.
 In the tea-making algorithm, plain English was used. It
has been shown how variable names may be used for some
of the algorithm variables. In Table 1.3, the right-hand
column contains variable names which are shorter than
the original and do not hide the meaning of the original
phrase. Underscores have been given to indicate that the
words belong together and represent a variable.

Table 1.3 Algorithm using variable names

Algorithm in Plain
English

Algorithm using Variable
Names

1. If the kettle does not
contain water, then ll the
kettle.

1. If kettle_empty then ll the
kettle.

2. Plug the kettle into the
power point and switch it
on.

2. Plug the kettle into the
power point and switch it
on.

3. If the teapot is not empty,
then empty the teapot.

3. If teapot_not_empty then
empty the teapot.

4. Place tea leaves in the
teapot.

4. Place tea leaves in the
teapot.

5. If the water in the kettle is
not boiling then go to
step 5.

5. If water_not_boiling then
go to step 5.

6. Switch off the kettle. 6. Switch off the kettle.

7. Pour water from the kettle
into the teapot.

7. Pour water from the kettle
into the teapot.

 There are no hard and fast rules about how variables
should be named but there are many conventions. It
is a good idea to adopt a conventional way of naming
variables.
 The algorithms and programs can bene t from using
naming conventions for processes too.

Points to Note

 1. Data is a symbolic representation of value.

 2. A variable, which has a name, is a container for a value
that may vary during the execution of the program.

1.9.5 Subroutines
A simple program is a combination of statements that are
implemented in a sequential order. A statement block is
a group of statements. Such a program is shown in Fig.
1.11(i). There might be a speci c block of statement,
which is also known as a procedure, that is run several
times at different points in the implementation sequence
of the larger program. This is shown in Fig.1.11(ii). Here,
this speci c block of statement is named “procedure X”. In
this example program, the “procedure X” is written twice
in this example. This enhances the size of the program.
Since this particular procedure is required to be run at
two speci c points in the implementation sequence of the
larger program, it may be treated as a separate entity and
not included in the main program. In fact, this procedure
may be called whenever required as shown in Fig.1.11(iii).
Such a procedure is known as a subroutine.

Start

Statement
1

Statement
2

Statement
3

Statement
N

Statement
4

End

�

Start

Statement
1

Procedure
X

Statement
2

Statement
N

Procedure
X

End

�

Start

Statement
1

Statement
2

Statement
3

Statement
N

End

�

Procedure
X

Subroutine

Call
Return

(i) A structure
of a simple
program

(ii) A structure
of a program
with repeated
procedures

(iii) A structure
of a program
using a
subroutine

Statement
4

Figure 1.11 Program structures

© Oxford University Press. All rights reserved.

18 Programming in C

 Therefore, a subroutine, also known as procedure,
method or function, is a portion of instruction that is
invoked from within a larger program to perform a
speci c task. At the same time the subroutine is relatively
independent of the remaining statements of the larger
program. The subroutine behaves in much the same way
as a program that is used as one step in a larger program.
A subroutine is often written so that it can be started
(“called”) several times and/or from several places during
a single execution of the program, including from other
subroutines, and then branch back (return) to the next
instruction after the “call”, once the subroutine’s task is
done. Thus, such subroutines are invoked with a CALL
statement with or without passing of parameters from the
calling program. The subroutine works on the parameters
if given to it, otherwise it works out the results and gives
out the result by itself and returns to the calling program
or pass the results to the calling program before returning
to it.
 The technique of writing subroutine has some distinct
advantages. The subroutine reduces duplication of block
of statements within a program, enables reuse of the block
of statements that forms the subroutine across multiple
programs, decomposes a complex task into simpler
steps, divides a large programming task among various
programmers or various stages of a project and hides
implementation details from users.
 However, there are some disadvantages in using
subroutines. The starting or invocation of a subroutine requires
some computational overhead in the call mechanism itself.
The subroutine requires some well de ned housekeeping
techniques at it’s entry and exit from it.

Points to Note

 1. A subroutine is a logical collection of instructions that
is invoked from within a larger program to perform a
speci c task.

 2. The subroutine is relatively independent of the remaining
statements of the program that invokes it.

 3. A subroutine can be invoked several times from several
places during a single execution of the invoking program.

 4. After completing the speci c task, a subroutine returns
to the point of invocation in the larger program.

Some examples on developing algorithms using step-form

For illustrating the step-form the following conventions
are assumed:

 1. Each algorithm will be logically enclosed by two
statements START and STOP.

 2. To accept data from user, the INPUT or READ
statements are to be used.

 3. To display any user message or the content in a
variable, PRINT statement will be used. Note that the
message will be enclosed within quotes.

 4. There are several steps in an algorithm. Each step
results in an action. The steps are to be acted upon
sequentially in the order they are arranged or directed.

 4. The arithmetic operators that will be used in the
expressions are

 (i) ‘ ’ ….Assignment (the left-hand side of ‘ ’
should always be a single variable)

 Example: The expression x 6 means that a
value 6 is assigned to the variable x. In terms of
memory storage, it means a value of 6 is stored
at a location in memory which is allocated to the
variable x.

 (ii) ‘+’….. Addition
 Example: The expression z x + y means

the value contained in variable x and the value
contained in variable y is added and the resulting
value obtained is assigned to the variable z.

 (iii) ‘–’….. Subtraction
 Example: The expression z x – y means the

value contained in variable y is subtracted from
the value contained in variable x and the resulting
value obtained is assigned to the variable z

 (iv) ‘*’….. Multiplication
 Example: Consider the following expressions

written in sequence:
 x 5
 y 6
 z x * y
 The result of the multiplication between x and y

is 30. This value is therefore assigned to z.
 (v) ‘/’….. Division
 Example: The following expressions written in

sequence illustrates the meaning of the division
operator :

 x 10
 y 6
 z x/y

© Oxford University Press. All rights reserved.

Introduction to Programming, Algorithms and Flowcharts 19

 The quotient of the division between x and y is 1
and the remainder is 4. When such an operator is
used the quotient is taken as the result whereas the
remainder is rejected. So here the result obtained
from the expression x/y is 1 and this is assigned
to z.

 5. In propositions, the commonly used relational
operators will include

 (i) ‘>’ ….. Greater than
 Example: The expression x > y means if the

value contained in x is larger than that in y then
the outcome of the expression is true, which will
be taken as 1. Otherwise, if the outcome is false
then it would be taken as 0.

 (ii) ‘<=’ …..Less than or equal to
 Example: The expression x <= y implies that

if the value held in x is either less than or equal
to the value held in y then the outcome of the
expression is true and so it will be taken as 1.

 But if the outcome of the relational expression is
false then it is taken as 0.

 (iii) ‘<’ …… Less than
 Example: Here the expression x < y implies that

if the value held in x is less than that held in y
then the relational expression is true, which is
taken as 1, otherwise the expression is false and
hence will be taken as 0.

 (iv) ‘=’ …… Equality
 Example: The expression x = y means that if the

value in x and that in y are same then this relational
expression is true and hence the outcome is 1
other wise the outcome is false or 0.

 (v) ‘>=’ …… Greater than or equal to
 Example: The expression x >= y implies that

if the value in x is larger or equal to that in y
then the outcome of the expression is true or 1,
otherwise it is false or 0.

 (vi) ‘!=’ …… Non- equality
 Example: The expression x != y means that if

the value contained in x is not equal to the value
contained in y then the outcome of the expression
is true or 1, otherwise it is false or 0.

 Note: The ‘equal to (=)’ operator is used both for
assignment as well as equality speci cation. When
used in proposition, it speci es equality otherwise
assignment. To differentiate ‘assignment’ from

‘equality’ left arrow () may be used. For example,
a b is an assignment but a = b is a proposition for
checking the equality.

 6. The most commonly used logical operators will be
AND, OR and NOT. These operators are used to
specify multiple test conditions forming composite
proposition. These are

 (i) ‘AND’…… Conjunction
 The outcome of an expression is true or 1 when

both the propositions AND-ed are true otherwise
it is false or 0.

 Example: Consider the expressions
 x 2
 y 1
 x = 2 AND y = 0
 In the above expression the proposition ‘x = 2’

is true because the value in x is 2. Similarly, the
proposition ‘y = 0’ is untrue as y holds 1 and
therefore this proposition is false or 0. Thus, the
above expression may be represented as ‘true’
AND ‘false’ the outcome for which is false or 0.

 (ii) ‘OR’ …… Disjunction
 The outcome of an expression is true or 1

when anyone of the propositions OR-ed is true
otherwise it is false or 0.

 Example: Consider the expressions
 x 2
 y 1
 x = 2 OR y = 0
 Here, the proposition ‘x = 2’ is true since x holds

2 while the proposition ‘y = 0’ is untrue or false.
Hence the third expression may be represented as
‘true’ OR ‘false’ the outcome for which is true
or 1.

 (iii) ‘NOT’ …… Negation
 If outcome of a proposition is ‘true’, it becomes

‘false’ when negated or NOT-ed.
 Example: Consider the expression
 x 2
 NOT x = 2
 The proposition ‘x = 2’ is ‘true’ as x contains

the value 2. But the second expression negates
this by the logical operator NOT which gives an
outcome ‘false’.

© Oxford University Press. All rights reserved.

20 Programming in C

Examples

 4. Write the algorithm for nding the sum of any two numbers.

 Solution Let the two numbers be A and B and let their sum be
equal to C. Then, the desired algorithm is given as follows:

 1. START

 2. PRINT “ENTER TWO NUMBERS”

 3. INPUT A, B

 4. C ¨ A + B

Add values assigned
to A and B and

assign this value to C

 5. PRINT C

 6. STOP

 Explanation The rst step is the starting point of the algorithm.
The next step requests the programmer to enter the two numbers
that have to be added. Step 3 takes in the two numbers given by
the programmer and keeps them in variables A and B. The fourth
step adds the two numbers and assigns the resulting value to the
variable C. The fth step prints the result stored in C on the output
device. The sixth step terminates the procedure.

 5. Write the algorithm for determining the remainder of a division
operation where the dividend and divisor are both integers.

 Solution Let N and D be the dividend and divisor, respectively.
Assume Q to be the quotient, which is an integer, and R to be the
remainder. The algorithm for the given problem is as follows.

 1. START

 2. PRINT “ENTER DIVIDEND”

 3. INPUT N

 4. PRINT “ENTER DIVISOR”

 5. INPUT D

Only integer value
is obtained and

remainder ignored

 6. Q ¨ N/D (Integer division)

 7. R ¨ N – Q * D

 8. PRINT R

 9. STOP

 Explanation The rst step indicates the starting point of the
algorithm. The next step asks the programmer to enter the
dividend value. The third step keeps the dividend value in the
variable N. Step 4 asks for the divisor value to be entered. This
is kept in the variable D. In step 6, the value in N is divided by
that in D. Since both the numbers are integers, the result is an
integer. This value is assigned to Q. Any remainder in this step
is ignored. In step 7, the remainder is computed by subtracting
the product of the integer quotient and the integer divisor from
integer dividend N. The computed value of the remainder is an
integer here and obviously less than the divisor. The remainder

value is assigned to the variable R. This value is printed on an
output device in step 8. Step 9 terminates the algorithm.

 6. Construct the algorithm for interchanging the numeric values of
two variables.

 Solution Let the two variables be A and B. Consider C to be a
third variable that is used to store the value of one of the variables
during the process of interchanging the values.

 The algorithm for the given problem is as follows.

 1. START

 2. PRINT “ENTER THE VALUE OF A & B”

 3. INPUT A, B

 4. C ¨ A

 5. A ¨ B

A B

C

step 5

step 4 step 6

 6. B ¨ C

 7. PRINT A, B

 8. END

 Explanation Like the previous examples, the rst step indicates
the starting point of the algorithm. The second step is an output
message asking for the two values to be entered. Step 3 puts
these values into the variables A and B. Now, the value in variable
A is copied to variable C in step 4. In fact the value in A is saved
in C. In step 5 the value in variable B is assigned to variable A.
This means a copy of the value in B is put in A. Next, in step 6 the
value in C, saved in it in the earlier step 4 is copied into B. In step
7 the values in A and B are printed on an output device. Step 8
terminates the procedure.

 7. Write an algorithm that compares two numbers and prints either
the message identifying the greater number or the message
stating that both numbers are equal.

 Solution This example demonstrates how the process of selection
or decision making is implemented in an algorithm using the step-
form. Here, two variables, A and B, are assumed to represent
the two numbers that are being compared. The algorithm for this
problem is given as follows.

 1. START

 2. PRINT “ENTER TWO NUMBERS”

 3. INPUT A, B

 4. IF A > B THEN

 PRINT “A IS GREATER THAN B”

 5. IF B > A THEN

 PRINT “B IS GREATER THAN A”

 6. IF A = B THEN

 PRINT “BOTH ARE EQUAL”

 7. STOP

© Oxford University Press. All rights reserved.

Introduction to Programming, Algorithms and Flowcharts 21

 Explanation The rst step indicates the starting point of the
algorithm. The next step prints a message asking for the entry of
the two numbers. In step 3 the numbers entered are kept in the
variables A and B. In steps 4, 5 and 6, the values in A, B and C
compared with the IF ...THEN construct. The relevant message is
printed whenever the proposition between IF and THEN is found
to agree otherwise the next step is acted upon. But in any case
one of the message would be printed because at least one of the
propositions would be true. Step 7 terminates the procedure.

 8. Write an algorithm to check whether a number given by the user
is odd or even.

 Solution Let the number to be checked be represented by N.
The number N is divided by 2 to give an integer quotient, denoted
by Q. If the remainder, designated as R, is zero, N is even;
otherwise N is odd. This logic has been applied in the following
algorithm.

 1. START

 2. PRINT “ENTER THE NUMBER”

 3. INPUT N

 4. Q ¨ N/2 (Integer division)

 5. R ¨ N – Q * 2

 6. IF R = 0 THEN

 PRINT “N IS EVEN”

 7. IF R != 0 THEN

 PRINT “N IS ODD”

 8. STOP

 Explanation The primary aim here is to nd out whether the
remainder after the division of the number with 2 is zero or not. If
the number is even the remainder after the division will be zero.
If it is odd, the remainder after the division will not be zero. So
by testing the remainder it is possible to determine whether the
number is even or odd.

 The rst step indicates the starting point of the algorithm
while the next prints a message asking for the entry of the
number. In step 3, the number is kept in the variable N. N is
divided by 2 in step 4. This operation being an integer division,
the result is an integer. This result is assigned to Q. Any
remainder that occurs is ignored. Now in step 5, the result Q
is multiplied by 2 which obviously produces an integer that is
either less than the value in N or equal to it. Hence in step 5
the difference between N and Q * 2 gives the remainder. This
remainder value is then checked in step 6 and step 7 to either
print out that it is either even or odd respectively. Step 8 just
terminates the procedure.

 9. Print the largest number among three numbers.

 Solution Let the three numbers be represented by A, B, and
C. There can be three ways of solving the problem. The three
algorithms, with some differences, are given below.

 1. START

 2. PRINT “ENTER THREE NUMBERS”

 3. INPUT A, B, C

 4. IF A >= B AND B >= C

 THEN PRINT A

 5. IF B >= C AND C >= A

 THEN PRINT B

 ELSE

 PRINT C

 6. STOP

 Explanation To nd the largest among the three numbers A,
B and C, A is compared with B to determine whether A is larger
than or equal to B. At the same time it is also determined whether
B is larger than or equal to C. If both these propositions are true
then the number A is the largest otherwise A is not the largest.
Step 4 applies this logic and prints A.

 If A is not the largest number as found by the logic in step
4, then the logic stated in step 5 is applied. Here again, two
propositions are compared. In one, B is compared with C and in
the other C is compared with A. If both these propositions are
true then B is printed as the largest otherwise C is printed as the
largest.

 Steps 1, 2, 3 and 6 needs no mention as it has been used in
earlier examples.

 Or

 This algorithm uses a variable MAX to store the largest number.

 1. START

 2. PRINT “ENTER THREE NUMBERS”

 3. INPUT A, B, C

 4. MAX ¨ A

 5. IF B > MAX THEN MAX ¨ B

 6. IF C > MAX THEN MAX ¨ C

 7. PRINT MAX

 8. STOP

 Explanation This algorithm differs from the previous one. After
the numbers are stored in the variables A, B and C, the value of
any one of these is assigned to a variable MAX. This is done in
step 4. In step 5, the value assigned to MAX is compared with

© Oxford University Press. All rights reserved.

22 Programming in C

that assigned to B and if the value in B is larger only then it’s
value is assigned to MAX otherwise it remains unchanged. In
step 6, the proposition “ IF C > MAX ” is true then the value in
C is assigned to MAX. On the other hand, if the position is false
then the value in MAX remains unchanged. So at the end of step
6, the value in MAX is the largest among the three numbers. Step
1 is the beginning step while step 8 is the terminating one for this
algorithm.

 Or

 Here, the algorithm uses a nested if construct.

 1. START
 2. PRINT “ENTER THREE NUMBERS”
 3. INPUT A, B, C
 4. IF A > B THEN
 IF A > C THEN
 PRINT A
 ELSE
 PRINT C
 ELSE IF B > C THEN
 PRINT B
 ELSE
 PRINT C
 5. STOP

 Explanation Here, the nested if construct is used. The construct
“IF p1 THEN action1 ELSE action2” decides if the proposition
“ p1” is true then action1 is implemented otherwise if it is false
action2 is implemented. Now, action1 and action2 may be either
plain statements like PRINT X or INPUT X or another “IF p2
THEN action3 ELSE action4” construct, were p2 is a proposition.
This means that a second “IF p1 THEN action1 ELSE action2”
construct can be interposed within the rst “IF p1 THEN action1
ELSE action2” construct. Such an implementation is known as
nested if construct.

 Step 4 implements the nested if construct. First the
proposition “A > B ”is checked to nd whether it is true or false.
If true, the proposition “A > C ” is veri ed and if this is found
to be true, the value in A is printed otherwise C is printed.
But if the rst proposition “A > B” is found to be false then the
next proposition that is checked is “B > C”. At this point if this
proposition is true then the value in B is printed whereas if it is
false C is printed.

 10. Take three sides of a triangle as input and check whether the
triangle can be drawn or not. If possible, classify the triangle as
equilateral, isosceles, or scalene.

 Solution Let the length of three sides of the triangle be represented
by A, B, and C. Two alternative algorithms for solving the problem
are given, with explanations after each step, as follows:

 1. START

 Step 1 starts the procedure.
 2. PRINT “ENTER LENGTH OF THREE SIDES OF A

TRIANGLE”

 Step 2 outputs a message asking for the entry of the lengths
for each side of the triangle.

 3. INPUT A, B, C

 Step 3 reads the values for the lengths that has been
entered and assigns them to A, B and C.

 4. IF A + B > C AND B + C > A AND A + C > B THEN

 PRINT “TRIANGLE CAN BE DRAWN”

 ELSE

 PRINT “TRIANGLE CANNOT BE DRAWN”: GO TO 6

 It is well known that in a triangle, the summation of lengths of
any two sides is always greater than the length of the third side.
This is checked in step 4. So for a triangle all the propositions
“A + B > C ”, “ B + C > A ” and “ A + C > B ” must be true. In such
a case, with the lengths of the three sides, that has been entered,
a triangle can be formed. Thus, the message “TRIANGLE CAN
BE DRAWN” is printed and the next step 5 is executed. But if
any one of the above three propositions is not true then the
message “TRIANGLE CANNOT BE DRAWN” is printed and so
no classi cation is required. Thus in such a case the algorithm is
terminated in step 6.

 5. IF A = B AND B = C THEN

 PRINT “EQUILATERAL”

 ELSE

 IF A != B AND B != C AND C !=A THEN

 PRINT “SCALENE”

 ELSE

 PRINT “ISOSCELES”

 After it has been found in step 4 that a triangle can be
drawn, this step is executed. To nd whether the triangle is an
“EQUILATERAL” triangle the propositions “A = B” and “B
= C” are checked. If both of these are true, then the message
“EQUILATERAL” is printed which means that the triangle
is an equilateral triangle. On the other hand if any or both the
propositions “A = B” and “B = C” are found to be untrue then
the propositions “A != B” and “B != C” and “C !=A” are
checked.

© Oxford University Press. All rights reserved.

Introduction to Programming, Algorithms and Flowcharts 23

 If none of the sides are equal to each other then all
these propositions are found to be true and so the message
“SCALENE” will be printed. But if these propositions
“A != B” and “B != C” and “C !=A” are false then the triangle
is obviously an isosceles triangle and hence the message
“ISOSCELES” is printed.

 6. STOP

 The procedure terminates here.
Or

 This algorithm differs from the previous one and applies an
alternate way to test whether a triangle can be drawn with the
given sides and also identify its type.

 1. START
 2. PRINT “ENTER THE LENGTH OF 3 SIDES OF A

TRIANGLE”
 3. INPUT A, B, C
 4. IF A + B > C AND B + C > A AND C + A > B

THEN
 PRINT “TRIANGLE CAN BE DRAWN”
 ELSE
 PRINT “TRIANGLE CANNOT BE DRAWN”
 : GO TO 8
 5. IF A = B AND B = C THEN
 PRINT “EQUILATERAL TRIANGLE”
 : GO TO 8
 6. IF A = B OR B = C OR C = A THEN
 PRINT “ISOSCELES TRIANGLE”
 : GO TO 8
 7. PRINT “SCALENE TRIANGLE”

 8. STOP

 Having followed the explanations given with each of the earlier
examples, the reader has already understood how the stepwise
representation of any algorithm of any problem starts, constructs
the logic statements and terminates.

 In a similar way the following example exhibits the stepwise
representation of algorithms for various problems.

 11. In an academic institution, grades have to be printed for students
who appeared in the nal exam. The criteria for allocating the
grades against the percentage of total marks obtained are as
follows.

Marks Grade Marks Grade

91–100 O 61–70 B

81–90 E 51–60 C

71–80 A <= 50 F

 The percentage of total marks obtained by each student in the
 nal exam is to be given as input to get a printout of the grade the
student is awarded.

 Solution The percentage of marks obtained by a student is
represented by N. The algorithm for the given problem is as
follows.

 1. START
 2. PRINT
 “ENTER THE OBTAINED PERCENTAGE MARKS”
 3. INPUT N
 4. IF N > 0 AND N <= 50 THEN
 PRINT “F”
 5. IF N > 50 AND N <= 60 THEN
 PRINT “C”
 6. IF N > 60 AND N <= 70 THEN
 PRINT “B”
 7. IF N > 70 AND N <= 80 THEN
 PRINT “A”
 8. IF N > 80 AND N <= 90 THEN
 PRINT “E”
 9. IF N > 90 AND N <= 100 THEN
 PRINT “O”
 10. STOP

 12. Construct an algorithm for incrementing the value of a variable
that starts with an initial value of 1 and stops when the value
becomes 5.

 Solution This problem illustrates the use of iteration or loop
construct. Let the variable be represented by C. The algorithm for
the said problem is given as follows.

 1. START

 2. C ¨ 1

 3. WHILE C <= 5
 4. BEGIN

While loop construct
for looping till C is

greater than 5
 5. PRINT C
 6. C ¨ C + 1
 7. END

 8. STOP

 13. Write an algorithm for the addition of N given numbers.

 Solution Let the sum of N given numbers be represented by
S. Each time a number is given as input, it is assigned to the
variable A. The algorithm using the loop construct ‘if … then goto
…’ is used as follows:

 1. START
 2. PRINT “HOW MANY NUMBERS?”
 3. INPUT N

 4. S ¨ 0

 5. C ¨ 1
 6. PRINT “ENTER NUMBER”
 7. INPUT A

 8. S ¨ S + A

 9. C ¨ C + 1

© Oxford University Press. All rights reserved.

24 Programming in C

 10. IF C <= N THEN GOTO 6

 11. PRINT S

 12. STOP

 14. Develop the algorithm for nding the sum of the series 1 + 2 + 3
+ 4 + … up to N terms.

 Solution Let the sum of the series be represented by S and the
number of terms by N. The algorithm for computing the sum is
given as follows.

 1. START
 2. PRINT “HOW MANY TERMS?”
 3. INPUT N

 4. S ¨ 0

 5. C ¨ 1

 6. S ¨ S + C

 7. C ¨ C + 1
 8. IF C <= N THEN GOTO 6
 9. PRINT S

 10. STOP

 15. Write an algorithm for determining the sum of the series 2 + 4 + 8
+ … up to N.

 Solution Let the sum of the series be represented by S and the
number of terms in the series by N. The algorithm for this problem
is given as follows.

 1. START
 2. PRINT “ENTER THE VALUE OF N”
 3. INPUT N

 4. S ¨ 0

 5. C ¨ 2

 6. S ¨ S + C

 7. C ¨ C * 2
 8. IF C <= N THEN GOTO STEP 6
 9. PRINT S
 10. STOP

 16. Write an algorithm to nd out whether a given number is a prime
number or not.

 Solution The algorithm for checking whether a given number is a
prime number or not is as follows.

 1. START
 2. PRINT “ENTER THE NUMBER”
 3. INPUT N
 4. IF N = 2 THEN
 PRINT “CO-PRIME” GOTO STEP 12

 5. D ¨ 2

 6. Q ¨ N/D (Integer division)

 7. R ¨ N – Q*D

 8. IF R = 0 THEN GOTO STEP 11

 9. D ¨ D + 1
 10. IF D <= N/2 THEN GOTO STEP 6
 11. IF R = 0 THEN
 PRINT “NOT PRIME”
 ELSE
 PRINT “PRIME”
 12. STOP

 17. Write an algorithm for calculating the factorial of a given number
N.

 Solution The algorithm for nding the factorial of number N is as
follows.

 1. START
 2. PRINT “ENTER THE NUMBER”
 3. INPUT N

 4. F ¨ 1

 5. C ¨ 1
 6. WHILE C <= N
 7. BEGIN

While loop construct
for looping till C is

greater than N

8. F ¨ F * C

9. C ¨ C + 1

 10. END
 11. PRINT F
 12. STOP

 18. Write an algorithm to print the Fibonacci series up to N terms.

 Solution The Fibonacci series consisting of the following terms
1, 1, 2, 3, 5, 8, 13, … is generated using the following algorithm.

 1. START
 2. PRINT “ENTER THE NUMBER OF TERMS”
 3. INPUT N
 4. C ¨ 1
 5. T ¨ 1
 6. T1 ¨ 0
 7. T2 ¨ 1
 8. PRINT T
 9. T ¨ T1 + T2
 10. C ¨ C + 1
 11. T1 ¨ T2
 12. T2 ¨ T
 13. IF C <= N THEN GOTO 8
 14. STOP

 19. Write an algorithm to nd the sum of the series 1 + x + x2 + x3 +
x4 + … up to N terms.

 Solution
 1. START
 2. PRINT “HOW MANY TERMS”
 3. INPUT N

© Oxford University Press. All rights reserved.

Introduction to Programming, Algorithms and Flowcharts 25
 4. PRINT “ENTER VALUE OF X”
 5. INPUT X

 6. T ¨ 1

 7. C ¨ 1

 8. S ¨ 0

 9. S ¨ S + T

 10. C ¨ C + 1

 11. T ¨ T * X
 12. IF C <= N THEN GOTO 9
 13. PRINT S
 14. STOP

 20. Write the algorithm for computing the sum of digits in a number.

 Solution

 1. START
 2. PRINT “ENTER THE NUMBER”
 3. INPUT N

 4. S ¨ 0

 5. Q ¨ N/10 (Integer division)

 6. R ¨ N – Q * 10

 7. S ¨ S + R

 8. N ¨ Q
 9. IF N > 0 THEN GOTO 5
 10. PRINT S
 11. STOP

 21. Write an algorithm to nd the largest number among a list of
numbers.

 Solution The largest number can be found using the following
algorithm.

 1. START
 2. PRINT “ENTER,
 TOTAL COUNT OF NUMBERS IN LIST”
 3. INPUT N

 4. C ¨ 0
 5. PRINT “ENTER THE NUMBER”
 6. INPUT A

 7. C ¨ C + 1

 8. MAX ¨ A
 9. PRINT “ENTER THE NUMBER”
 10. INPUT B

 11. C ¨ C + 1
 12. IF B > MAX THEN

 MAX ¨ B
 13. IF C <= N THEN GOTO STEP 9
 14. PRINT MAX
 15. STOP

 22. Write an algorithm to check whether a given number is an
Armstrong number or not. An Armstrong number is one in which
the sum of the cube of each of the digits equals that number.

 Solution If a number 153 is considered, the required sum is (1
3

+ 5
3
 + 3

3
), i.e., 153. This shows that the number is an Armstrong

number. The algorithm to check whether 153 is an Armstrong
number or not, is given as follows.

 1. START
 2. PRINT “ENTER THE NUMBER”
 3. INPUT N

 4. M ¨ N

 5. S ¨ 0

 6. Q ¨ N/10 (Integer division)

 7. R ¨ N – Q * 10

 8. S ¨ S + R * R * R

 9. N ¨ Q
 10. IF N > 0 THEN GOTO STEP 6
 11. IF S = M THEN
 PRINT “THE NUMBER IS ARMSTRONG”
 ELSE PRINT “THE NUMBER IS NOT ARMSTRONG”
 12. STOP

 23. Write an algorithm for computing the sum of the series 1 + x +
x2/2! + x3/3! + x4/4! + … up to N terms.

 Solution

 1. START

 2. PRINT “ENTER NUMBER OF TERMS”

 3. INPUT N

 4. PRINT “ENTER A NUMBER”

 5. INPUT X

 6. T ¨ 1

 7. S ¨ 0

 8. C ¨ 1

 9. S ¨ S + T

 10. T ¨ T * X/C

 11. C ¨ C + 1

 12. IF C <= N THEN GO TO STEP 9

 13. PRINT S

 14. STOP

 Pseudo-code

Like step-form, Pseudo-code is a written statement of an
algorithm using a restricted and well-de ned vocabulary.
It is similar to a 3GL, and for many programmers and
program designers it is the preferred way to state algorithms
and program speci cations.

© Oxford University Press. All rights reserved.

26 Programming in C

 Although there is no standard for pseudo-code, it is
generally quite easy to read and use. For instance, a sample
pseudo-code is written as follows:

dowhile kettle_empty
 Add_Water_To_Kettle

end dowhile

As can be seen, it is a precise statement of a while loop.

Flowcharts

A owchart provides appropriate steps to be followed in
order to arrive at the solution to a problem. It is a program
design tool which is used before writing the actual program.
Flowcharts are generally developed in the early stages of
formulating computer solutions.
 A owchart comprises a set of various standard shaped
boxes that are interconnected by ow lines. Flow lines
have arrows to indicate the direction of the ow of control
between the boxes. The activity to be performed is written
within the boxes in English. In addition, there are connector
symbols that are used to indicate that the ow of control
continues elsewhere, for example, the next page.
 Flowcharts facilitate communication between program-
mers and b usiness persons. These owcharts play a vital
role in the programming of a problem and are quite help-
ful in understanding the logic of complicated and lengthy
problems. Once the owchart is drawn, it becomes easy
to write the program in any high-level language. Often
 owcharts are helpful in explaining the program to others.

Hence, a owchart is a must for better documentation of a
complex program.

Standards for owcharts The following standards should
be adhered to while drawing ow charts.

 ∑ Flowcharts must be drawn on white, unlined 81/2 ×
11 paper, on one side only.

 ∑ Flowcharts start on the top of the page and ow down
and to the right.

 ∑ Only standard owcharting symbols should be used.
 ∑ A template to draw the nal version of owchart

should be used.
 ∑ The contents of each symbol should be printed

legibly.
 ∑ English should be used in owcharts, not programming

language.

 ∑ The owchart for each subroutine, if any, must
appear on a separate page. Each subroutine begins
with a terminal symbol with the subroutine name and
a terminal symbol labeled return at the end.

 ∑ Draw arrows between symbols with a straight edge
and use arrowheads to indicate the direction of the
logic ow.

Guidelines for drawing a owchart Flowcharts are
usually drawn using standard symbols; however, some
special symbols can also be developed when required.
Some standard symbols frequently required for
 owcharting many computer programs are shown in

Fig.1.12.

Computational steps or processing
function of a program

Start or end of the program or
flowchart

Input entry or output display
operation

A decision making and branching
operation that has two alternatives

Connects remote parts of the
flowchart on the same page

A magnetic tape

A magnetic disk

Connects remote portions
of the flowchart not on the
same page

Flow lines

Add comments or furnish
clarifications

Display

Figure 1.12 Flowchart symbols

The following are some guidelines in owcharting.
 ∑ In drawing a proper owchart, all necessary

requirements should be listed out in a logical order.
 ∑ There should be a logical start and stop to the owchart.

© Oxford University Press. All rights reserved.

Introduction to Programming, Algorithms and Flowcharts 27

 ∑ The owchart should be clear, neat, and easy to follow.
There should be no ambiguity in understanding the
 owchart.

 ∑ The usual direction of the ow of a procedure or
system is from left to right or top to bottom.

 ∑ Only one ow line should emerge from a process
symbol.

or

 ∑ Only one ow line should enter a decision symbol,
but two or three ow lines, one for each possible
answer, can leave the decision symbol.

false

true

 ∑ Only one ow line is used in conjunction with a
terminal symbol.

START STOP

 ∑ The writing within standard symbols should be brief.
If necessary, the annotation symbol can be used to
describe data or computational steps more clearly.

This is a top secret data

 ∑ If the owchart becomes complex, connector symbols
should be used to reduce the number of ow lines.
The intersection of ow lines should be avoided to
make the owchart a more effective and better way
of communication.

 ∑ The validity of the owchart should be tested by
passing simple test data through it.

 ∑ A sequence of steps or processes that are executed
in a particular order is shown using process symbols
connected with ow lines. One ow line enters the
 rst process while one ow line emerges from the

last process in the sequence.

First process in sequence

Last process in sequence

 ∑ Selection of a process or step is depicted by the
decision making and process symbols. Only one input
indicated by one incoming ow line and one output
 owing out of this structure exists. The decision

symbol and the process symbols are connected by
 ow lines.

process2process1

falsetrue

 ∑ Iteration or looping is depicted by a combination of
process and decision symbols placed in proper order.
Here ow lines are used to connect the symbols and
depict input and output to this structure.

process

falsetrue

© Oxford University Press. All rights reserved.

28 Programming in C

 Advantages of using owcharts

 ∑ Communication: Flowcharts are a better way of
communicating the logic of a system to all concerned.

 ∑ Effective analysis: With the help of owcharts,
problems can be analyzed more effectively.

 ∑ Proper documentation: Program owcharts serve as
a good program documentation needed for various
purposes.

 ∑ Ef cient coding: Flowcharts act as a guide or
blueprint during the systems analysis and program
development phase.

 ∑ Proper debugging: Flowcharts help in the debugging
process.

 ∑ Ef cient program maintenance: The maintenance of
an operating program becomes easy with the help of
a owchart.

 Limitations of using owcharts

 ∑ Complex logic: Sometimes, the program logic
is quite complicated. In such a case, a owchart
becomes complex and clumsy.

 ∑ Alterations and modi cations: If alterations are
required, the owchart may need to be redrawn
completely.

 ∑ Reproduction: Since the owchart symbols cannot
be typed in, the reproduction of a owchart becomes
a problem.

 ∑ Loss of objective: The essentials of what has to be
done can easily be lost in the technical details of how
it is to be done.

Points to Note

 1. A owchart comprises a set of standard shaped boxes
that are interconnected by ow lines to represent an
algorithm.

 2. There should be a logical start and stop to the owchart.

 3. The usual direction of the ow of a procedure or
system is from left to right or top to bottom.

 4. The intersection of ow lines should be avoided.

 5. Flowcharts facilitate communication between pro-
grammers and users.

Flowcharting examples A few examples on owcharting
are presented for a proper understanding of the technique.

This will help the student in the program development
process at a later stage.

Examples

 24. Draw a owchart to nd the sum of the rst 50 natural
numbers.

 Solution

START

STOP

SUM = 0

N = 0

N = N+1

SUM = SUM+N

IS
N = 50?

NO

PRINT SUM
YES

 25. Draw a owchart to nd the largest of three numbers A, B,
and C.

 Solution

START

STOP

READ A,B,C

PRINT CPRINT B PRINT A

IS A>B?IS B>C? IS A>C?

Y
E

S

NO

NO NO

YES

Y
E

S

 26. Draw a owchart for computing factorial N (N!) where
N! = 1 × 2 × 3 × … × N.

© Oxford University Press. All rights reserved.

Introduction to Programming, Algorithms and Flowcharts 29

 Solution

START

END

T=1
F=1

T=T+1 IS
T>N?

NO

PRINT F

READ N

YES

F=F*T

 27. Draw a owchart for calculating the simple interest using the
formula SI = (P * T * R)/100, where P denotes the principal
amount, T time, and R rate of interest. Also, show the algorithm
in step-form.

 Solution

START

STOP

CALCULATE
P*T*R
100

PRINT VALUE FOR I

INPUT
P, T, R

Step 1: START

Step 2: Read P, ,T R

Step 3: Calculate I=P*R*T/100

Step 4: IPRINT

Step 5: STOP

I =

 28. The XYZ Construction Company plans to give a 5% year-end
bonus to each of its employees earning Rs 5,000 or more per
year, and a xed bonus of Rs 250 to all other employees. Draw a
 owchart and write the step-form algorithm for printing the bonus
of any employee.

 Solution

Step 5: Calculate Bonus = 250

START

STOP

PRINT BONUS

INPUT SALARY
OF AN EMPLOYEE

IS
SALARY>=5000

BONUS = 250 BONUS =
0.05*SALARY

NO YES

Step 1: START
Step 2: Read salary of

an employee
Step 3: salary is greater than

or equal to 5,000
Step 4 Step 5

IF
THEN

ELSE
Step 4: Calculate

Bonus = 0.05 * Salary

Step 6: Print Bonus

Step 7: STOP

 29. Prepare a owchart to read the marks of a student and classify
them into different grades. If the marks secured are greater than
or equal to 90, the student is awarded Grade A; if they are greater
than or equal to 80 but less than 90, Grade B is awarded; if they
are greater than or equal to 65 but less than 80, Grade C is
awarded; otherwise Grade D is awarded.

 Solution

START

READ MARKS

ARE
MARKS 90≥

ARE
MARKS 80≥

ARE
MARKS 65>

GRADE = A

GRADE = B

GRADE = C GRADE = D

PRINT GRADE

STOP

NOYES

NOYES

NOYES

© Oxford University Press. All rights reserved.

30 Programming in C

 30. Draw a owchart to nd the roots of a quadratic equation.

 Solution

START

D=B*B–4*A*C

READ A,B,C

STOP

NO IS
D>0

IS D>0
REAL1=(–B+SQRT(D))/(2*A)
REAL2=(B SQRT(D))/(2*A)– –

REAL1= B/2*A
REAL2= B/2*A

–
–

PRINT
“COMPLEX
ROOTS”

PRINT A,B,C
REAL1,
REAL2

PRINT A,B,C
REAL1,
REAL2

YES

NO YES

 31. Draw a owchart for printing the sum of even terms contained
within the numbers 0 to 20.

 Solution

START

SUM=0

COUNT=1

COUNT=COUNT+1

IS COUNT
AN EVEN
NUMBER?

IS
COUNT>20

SUM=SUM+COUNT

NO YES

YES

NO

B

STOP

PRINT SUM

B

1.9.6 Strategy for Designing Algorithms

Now that the meaning of algorithm and data has been
understood, strategies can be devised for designing
algorithms. The following is a useful strategy.

 Investigation step

 1. Identify the outputs needed.
 This includes the form in which the outputs have to be

presented. At the same time, it has to be determined
at what intervals and with what precision the output
data needs to be given to the user.

 2. Identify the input variables available.
 This activity considers the speci c inputs available

for this program, the form in which the input variables
would be available, the availability of inputs at
different intervals, the ways in which the input would
be fed to the transforming process.

 3. Identify the major decisions and conditions.
 This activity looks into the conditions imposed by the

need identi ed and the limitations of the environment
in which the algorithm has to be implemented.

 4. Identify the processes required to transform inputs
into required outputs.

 This activity identi es the various types of procedures
needed to manipulate the inputs, within the bounding
conditions and the limitations mentioned in step 3, to
produce the needed outputs.

 5. Identify the environment available.
 This activity determines the kind of users and the

type of computing machines and software available
for implementing the solution through the processes
considered in steps.

 Top-down development step

 1. Devise the overall problem solution by identifying the
major components of the system.

© Oxford University Press. All rights reserved.

Introduction to Programming, Algorithms and Flowcharts 31

 The goal is to divide the problem solution into
manageable small pieces that can be solved
separately.

 2. Verify the feasibility of breaking up the overall problem
solution.

 The basic idea here is to check that though each small
piece of solution procedure are independent, they
are not entirely independent of each other, as they
together form the whole solution to the problem. In
fact, the different pieces of solution procedures have
to cooperate and communicate in order to solve the
larger problem.

 Stepwise re nement

 1. Work out each and every detail for each small piece
of manageable solution procedure.

 Every input and output dealt with and the
transformation algorithms implemented in each small
piece of solution procedure, which is also known
as process, is detailed. Even the interfacing details
between each small procedure are worked out.

 2. Decompose any solution procedure into further
smaller pieces and iterate until the desired level of
detail is achieved.

 Every small piece of solution procedure detailed in
step 1 is checked once again. If necessary any of these
may be further broken up into still smaller pieces of
solution procedure till it can no more be divided into
meaningful procedure.

 3. Group processes together which have some commonality.
 Some small processes may have to interface with a

common upper level process. Such processes may be
grouped together if required.

 4. Group variables together which have some appropriate
commonality.

 Certain variables of same type may be dealt as
elements of a group.

 5. Test each small procedure for its detail and correctness
and its interfacing with the other small procedures.

 Walk through each of the small procedures to determine
whether it satis es the primary requirements and
would deliver the appropriate outputs. Also, suitable
tests have to be carried out to verify the interfacing

between various procedures. Hence, the top-down
approach starts with a big and hazy goal. It breaks the
big goal into smaller components. These components
are themselves broken down into smaller parts. This
strategy continues until the designer reaches the stage
where he or she has concrete steps that can actually
be carried out.

 It has to be noted that the top-down approach does
not actually take into account any existing equipment,
people, or processes. It begins with a “clean slate” and
obtains the optimal solution. The top-down approach
is most appropriate for large and complex projects
where there is no existing equipment to worry about.
However, it may be costly because, sometimes, the
existing equipments may not t into the new plan
and it has to be replaced. However, if the existing
equipments can be made to t into the new plan with
very less effort, it would be bene cial to use it and
save cost.

Points to Note

 1. Investigation phase determines the requirements for
the problem solution.

 2. The top-down development phase plans out the way
the solution has to be done by breaking it into smaller
modules and establishing a logical connection among
them.

 3. The step-wise re nement further decomposes the
modules, de nes the procedure in it and veri es the
correctness of it.

1.9.7 Tracing an Algorithm to Depict logic

An algorithm is a collection of some procedural steps that
have some precedence relation between them. Certain
procedures may have to be performed before some others
are performed. Decision procedures may also be involved
to choose whether some procedures arranged one after
other are to be executed in the given order or skipped
or implemented repetitively on ful llment of conditions
arising out of some preceding manipulations. Hence,
an algorithm is a collection of procedures that results in
providing a solution to a problem. Tracing an algorithm
primarily involves tracking the outcome of every
procedure in the order they are placed. Tracking in turn
means verifying every procedure one by one to determine

© Oxford University Press. All rights reserved.

32 Programming in C

and con rm the corresponding result that is to be obtained.
This in turn can be traced to offer an overall output from
the implementation of the algorithm as a whole. Consider
Example 26 given in this chapter for the purpose of
tracing the algorithm to correctly depict the logic of the
solution. Here at the start, the “mark obtained by a student
in a subject” is accepted as input to the algorithm. This
procedure is determined to be essential and alright. In
the next step, the marks entered is compared with 90.
As given, if the mark is greater than 90, then the mark
obtained is categorized as Grade A and printed, otherwise
it is be further compared. Well, this part of the algorithm
matches with the requirement and therefore this part of the
logic is correct.
 For the case of further comparison, the mark is again
compared with 80 and if it is greater, then Grade B is
printed. Otherwise, if the mark is less than 80, then
further comparison is carried out. This part of the logic
satis es the requirement of the problem. In the next step
of comparison, the mark is compared with 65. If the mark
is lesser than 65, Grade C is printed, otherwise Grade D
is printed. Here also, the owchart depicts that the correct
logic has been implemented.
 The above method shows how the logic of an algorithm,
planned and represented by a tool like the owchart, can
be veri ed for its correctness. This technique, also referred
to as deskcheck or dry run, can also be used for algorithms
represented by tools other than the owchart.

1.9.8 Speci cation for Converting Algorithms into
Programs

By now, the method of formulating an algorithm has been
understood. Once the algorithm, for solution of a problem,
is formed and represented using any of the tools like
step-form or owchart or pseudo code, etc., it has to be
transformed into some programming language code. This
means that a program, formed by a sequence of program
instructions belonging to a programming language, has
to be written to represent the algorithm that provides a
solution to a problem.
 Hence, the general procedure to convert an algorithm
into a program is given as follows:

Code the algorithm into a program—Understand the
syntax and control structures used in the language that
has been selected and write the equivalent program
instructions based upon the algorithm that was created.

Each statement in an algorithm may require one or more
lines of programming code.

Desk-check the program—Check the program code by
employing the desk-check method and make sure that the
sample data selected produces the expected output.

Evaluate and modify, if necessary, the program—Based on
the outcome of desk-checking the program, make program
code changes, if necessary, or make changes to the original
algorithm, if need be.

Do not reinvent the wheel—If the design code already
exists, modify it, do not remake it.

Points to Note

 1. An algorithm can be traced by verifying every
procedure one by one to determine and con rm the
corresponding result that is to be obtained.

 2. The general procedure to convert an algorithm into
a program is to code the algorithm using a suitable
programming language, check the program code by
employing the desk-check method and nally evaluate
and modify the program, if needed.

 Because the reader has not yet been introduced to the
basics of the C language, the reader has to accept the use of
certain instructions like #include <stdio.h>, int main(),
printf(), scanf(), and return without much explanation
at this stage in the example program being demonstrated
below.
 However, on a very preliminary level, the general
form of a C program and the use of some of the
necessary C language instructions are explained brie y
as follows:
 1. All C programs start with:
 #include <stdio.h>

 int main ()

 {

 2. In C, all variables must be declared before using
them. So the line next to the two instruction lines,
given in step 1, should be any variable declarations
that is needed.

 For example, if a variable called “ a ” is supposed to
store an integer, then it is declared as follows:

 int a;

 3. Here, scanf() is used for inputting data to the C
program and printf() is used to output data on the
monitor screen.

© Oxford University Press. All rights reserved.

Introduction to Programming, Algorithms and Flowcharts 33

 4. The C program has to be terminated with a statement
given below:

 return 0;

 }

 Here is an example showing how to convert some
pseudocode statements into C language statements:

 Pseudocode
 LOOP {

 EXIT LOOP

 IF (conditions) {

 ELSE IF (conditions) {

 ELSE {

 INPUT a

 OUTPUT “Value of a:” a

 + - * / %

 =

 <—

 !=

 AND

 OR

 NOT

C language Code
 while(1) {

 break;

 if (conditions) {

 else if (conditions) {

 else

 scanf(“%d”,&a);

 printf(“Value of a: %d”,a);

 (same)

 ==

 =

 !=

 &&

 ||

 !

 To demonstrate the procedure of conversion from an
algorithm to a program in C, an example is given below.

Problem statement Write the algorithm and the corre-
sponding program in C for adding two integer numbers
and printing the result.

Solution
Algorithm
1. START

2. DECLARE A AND B AS INTEGER VARIABLES

3. PRINT “ ENTER TWO NUMBERS ”

4. INPUT A, B

5. R = A + B

6. PRINT “ RESULT = ”

7. PRINT R

8. STOP.

Program in C
 int main()

 {

 int A, B;

 printf(“\n ENTER TWO NUMBERS:”);

 scanf(“%d%d”,&A,&B);

 R = A + B;

 printf(“\n RESULT = ”);

 printf(“%d”,R);

 return 0;

 }

SUMMARY

A program is a sequence of instructions and the process of writing a
program is called programming. Programs are broadly categorized as
system programs and application programs. Different programming
languages have evolved. High-level languages are easy to use while
low-level languages are complex. Therefore, writing programs in low-
level languages is dif cult and time consuming.

 Compilers and interpreters are basically language translators that
convert program instructions to machine code. A linker attaches utilities

routines to the translated source code. A loader is responsible for
physically placing this code in the main memory.

 An algorithm is a statement about how a problem will be solved and
almost every algorithm exhibits the same features. There are many ways
of stating algorithms; three of them have been mentioned here. These
are step-form, pseudo code, and owchart method. Of these owchart
is a pictorial way of representing the algorithm. Here, the START and
STOP are represented by an ellipse-like gure, , decision

© Oxford University Press. All rights reserved.

34 Programming in C

KEY-TERMS

Algorithm Speci es a procedure for solving a problem in a nite
number of steps.
Application software A collection of programs that enables the
computer to solve a speci c data processing task.
Assembler A translator that takes input in the form of the assembly
language and produces machine language code as its output.
Assembly language A low-level programming language.
Compiler A language translator that takes the high-level language
program as input and produces the executable machine language code.
Correctness Means how easily its logic can be argued to meet the
algorithm’s primary goal.
Data A symbolic representation of value.
Debug To search and remove errors in a program.
High-level programming language A language similar to human
languages that makes it easy for a programmer to write programs and
identify and correct errors in them.
Interpreter A language translator that translates and executes a
program line by line.
Investigation step A step to determine the input, output and
processing requirements of a problem.
Linker A program that resolves references between programs.
Loader A program that physically places the machine instructions
and data in main memory.

Low-level programming language Closer to the native language of
the computer, which is 1’s and 0’s.

Machine language Language that provides instructions in the form
of binary numbers consisting of 1’s and 0’s to which the computer
responds directly

Operating system System software that manages the computer’s
resources effectively.
Portability language Programming language that is not machine
dependent and can be used in any computer.

Program A set of logically related instructions arranged in a sequence
that directs the computer in solving a problem.

Programming languages A language composed of a set of
instructions understandable by the programmer.

Programming The process of writing a program.

System software A collection of programs that interfaces with the
computer hardware.
Termination Closure of a procedure.
Top-down analysis Breaking up a problem solution into smaller
modules and de ninig their interconnections to provide the total
solution to a problem.
Variable A container for a value that may or may not vary during the
execution of the program.

FREQUENTLY ASKED QUESTIONS

1. What is a programming language?
 A programming language is an arti cial formalism in which algorithms
can be expressed. More formally, a computer program is a sequence
of instructions that is used to operate a computer to produce a speci c
result.

 A programming language is the communication bridge between
a programmer and computer. A programming language allows a
programmer to create sets of executable instructions called programs
that the computer can understand. This communication bridge is needed
because computers understand only machine language, which is an
instruction language in which data are represented by binary digits.

2. What is a token?
 A token is any word or symbol that has meaning in the language, such
as a keyword (reserved word) such as if or while. The tokens are
parsed or grouped according to the rules of the language.

3. What is syntax?

 Syntax is the ‘grammar’ of the programming language. It speci es
the formal rules governing the way the vocabulary elements of the
language can be combined to form instructions. The syntax of a
programming language de nes exactly what combinations of letters,
numbers, and symbols can be used in a programming language.
During compilation, all syntax rules are checked. If a program is not
syntactically correct, the compiler will issue error messages and will
not produce object code.

4. What is a variable?

 A variable is a name given to the area of computer memory that holds
the relevant data. Each variable has a data type, which might be number,
character, string, a collection of data elements (such as an array), a
data record, or some special type de ned by the programmer.

construct by the rhombus-like gure, , the processes by
rectangles, and input/output by parallelograms, .
Lines and arrows connect these blocks. Every useful algorithm uses
data, which might vary during the course of the algorithm. To design
algorithms, it is a good idea to develop and use a design strategy.

 Generally the design strategy consists of three stages. The rst
stage is investigation activity followed by the top-down development
approach stage and eventually a stepwise re nement process. Once
the design strategy is decided the algorithm designed is traced to
determine whether it represents the logic. Eventually, the designed and
checked, algorithm is transformed into a program.

© Oxford University Press. All rights reserved.

Introduction to Programming, Algorithms and Flowcharts 35

5. What are the dif culties faced in procedural programming?

 The main drawback of procedural programming is that it breaks down
when problems become very large especially when it is highly complex,
making it somewhat more dif cult for a team of people to work with it.
There are limits to the amount of detail and largeness one can cope
with. Non-procedural programming like object-oriented programming
can help the programmer compartmentalize and manage that detail.
Various forms of non-procedural programming are vastly more effective
for many large real-world problems.

6. What is Spaghetti code?

 Non-modular code is normally referred to as spaghetti code. It is named
so because it produces a disorganized computer program using many
GOTO statements.

7. What is structured programming?

 Structured programming is a style of programming designed to make
programs more comprehensible and programming errors less frequent.
This technique of programming enforces a logical structure on the
program being written to make it more ef cient and easier to understand
and modify. It usually includes the following characteristics:

 Block structure The statements in the program must be organized
into functional groups. It emphasizes clear logic.

 Avoidance of jumps A lot of GOTO statements makes the programs
more error-prone. Structured programming uses less of these
statements. Therefore it is also known as ‘GOTO less programming’.

 Modularity It is a common idea that structuring the program makes it
easier for us to understand and therefore easier for teams of developers
to work simultaneously on the same program.

8. What are the advantages and disadvantages of structured
programming?

 Structured programming provides options to develop well-organized
codes which can be easily modi ed and documented.

 Modularity is closely associated with structured programming. The
main idea is to structure the program into functional groups. As a result,
it becomes easier for us to understand and therefore easier for teams of
developers to work simultaneously on the same program.

 Another advantage of structured programming is that it reduces
complexity. Modularity allows the programmer to tackle problems in a
logical fashion. This improves the programming process through better
organization of programs and better programming notations to facilitate
correct and clear description of data and control structure.

 Structured programming also saves time as without modularity, the
code that is used multiple times needs to be written every time it is used.
On the other hand, modular programs need one to call a subroutine (or
function) with that code to get the same result in a structured program.

 Structured programming encourages stepwise re nement, a
program design process described by Niklaus Wirth. This is a top-down
approach in which the stages of processing are rst described in high-

level terms, and then gradually worked out in their details, much like the
writing of an outline for a book.

 The disadvantages of structured programming include the
following:

 Firstly, error control may be harder to manage. Managing
modi cations may also be dif cult.

 Secondly, debugging efforts can be hindered because the problem
code will look right and even perform correctly in one part of the program
but not in another.

9. What is pseudocode?

 Pseudocode is an informal description of a sequence of steps for
solving a problem. It is an outline of a computer program, written in a
mixture of a programming language and English. Writing pseudocodes
is one of the best ways to plan a computer program.

 The advantage of having pseudocodes is that it allows the
programmer to concentrate on how the program works while ignoring
the details of the language. By reducing the number of things the
programmer must think about at once, this technique effectively
ampli es the programmer’s intelligence.

10. What is top-down programming?

 Top-down programming is a technique of programming that rst de nes
the overall outlines of the program and then lls in the details.

 This approach is usually the best way to write complicated programs.
Detailed decisions are postponed until the requirements of the large
program are known; this is better than making the detailed decisions
early and then forcing the major program strategy to conform to them.
Each part of the program (called a module) can be written and tested
independently.

11. What is an error? Describe different types of error that may
occur in a program.

 An error that occurs during the compilation stage is called a compiler
error. A compiler error occurs when a given program does not follow the
grammatical rules of a C program.

 An error that occurs during the linking stage is called a linker error. A
linker error typically occurs when the linker cannot locate the le to be
linked.

 Finally, an error that occurs during the execution of a program
is called a runtime error. These are the most troublesome errors to
correct.

 Logic errors are errors in a program that executes without performing
the intended action. In this case, the program compiles and executes
without complaints, but it produces incorrect results. It occurs when
the logic of the program as written is different from what was actually
intended. A compiler cannot nd such errors, and it must be ushed out
when the program runs, by testing it and carefully looking at its output.
The programmer is responsible for inspecting and testing the program to
guard against logic errors.

© Oxford University Press. All rights reserved.

36 Programming in C

12. What is a debugger?

 A debugger is a programming tool that is used to debug a program, i.e.,
to correct the logical errors. Using a debugger, one can control a program
while it is running. The execution of the program can be stopped at some
point and the values in the different variables can be checked and these
values can be amended if desired. In this way, the logical errors can
be traced in the program and it can be seen whether the program is
producing correct results. This tool is very powerful and complex.

13. What is the function of a loader?

 After an executable program is linked and saved on the disk, it is ready
for execution. A program called loader is needed to load the program
into memory and then instruct the processor to execute the program
from the rst instruction (the starting point of every C program is from
the main function). This processor is known as a loader. Linker and
loaders are the parts of development environment. In fact, these are the
parts of system software.

14. What do you mean by high-level and low-level programming
languages? Differentiate between them.

 Both assembly language and machine language are considered as
low-level languages. The instructions in these languages have to take

into account the physical characteristics of the machine. Maybe these
features are completely irrelevant to the algorithm, but they have to be
considered while writing programs or developing algorithms.

 High-level programming languages, on the other hand, are those
which support the use of constructs that use appropriate abstraction
mechanisms to ensure that they are independent of the physical
characteristics of the computer. The term ‘high-level’ refers to the fact
that the programming statements are expressed in a form approaching
natural language, far removed from the machine language that is
ultimately executed.

 The difference between high level language and low level language
is summarized in the following table.

High-level Language Low-level Language

One instruction = many
machine code instructions

One instruction = one
machine code instruction

Portable, task-oriented Machine speci c, machine-
oriented

More English-like Less easy to write and
debug

EXERCISE

 1. What do you mean by a program?

 2. Distinguish between system software and application software.

 3. State the advantages and disadvantages of machine language
and assembly language.

 4. Compare and contrast assembly language and high-level
language.

 5. Differentiate between 3GL and 4GL.

 6. What is a translator?

 7. What are the differences between a compiler and an interpreter?

 8. Brie y explain the compilation and execution of a program written
in high-level language.

 9. Brie y explain linker and loader? Is there any difference between
them?

 10. Explain linking loader and linkage editor?

 11. Classify the programming languages.

 12. What is a functional language?

 13. What is object-oriented language? Name ve object-oriented
programming languages. State the most common features of
object-oriented programming.

 14. What do you mean by structured programming? State the
properties of structured programming.

 15. What is top-down analysis? Describe the steps involved in top-
down analysis.

 16. What is a structured code?

 17. What is an algorithm?

 18. Write down an algorithm that describes making a telephone call.
Can it be done without using control statements?

 19. Write algorithms to do the following:

 (a) Check whether a year given by the user is a leap year or
not.

 (b) Given an integer number in seconds as input, print the
equivalent time in hours, minutes, and seconds as output.
The recommended output format is something like:

 7,322 seconds is equivalent to 2 hours 2 minutes 2
seconds.

 (c) Print the numbers that do not appear in the Fibonacci
series. The number of terms to be printed should be given
by the user.

 (d) Convert the binary equivalent of an integer number.

 (e) Find the prime factors of a number given by the user.

 (f) Check whether a number given by the user is a Krishnamurty
number or not. A Krishnamurty number is one for which the
sum of the factorials of its digits equals the number. For
example, 145 is a Krishnamurty number.

 (g) Print the second largest number of a list of numbers given
by the user.

© Oxford University Press. All rights reserved.

Introduction to Programming, Algorithms and Flowcharts 37

 (h) Print the sum of the following series:

 (i) 1 x2/2! + x4/4! + up to n terms where n is given by the user

 (ii) 1 1/2 + 1/3 up to n terms where n is given by the user

 (iii) 1 + 1/2! + 1/3! + up to n terms where n is given by the user

 20. By considering the algorithmic language that has been taught,
answer the following:

 (a) Show clearly the steps of evaluating the following
expressions:

 (i) x y + 12 * 3/6 + k ^ x where x = 2, y = 6, k = 5

 (ii) a AND b OR (m < n) where a = true, b = false, m = 7, n = 9

 (b) State whether each of the following is correct or wrong.
Correct the error(s) where applicable.

 (i) The expression (35 = 035) is true.

 (ii) x1 x2 * 4 value

 (iii) INPUT K, Y Z

 21. Write an algorithm as well as draw a owchart for the following:

 Input
 ∑ the item ID number

 ∑ the Number On Hand

 ∑ the Price per item

 ∑ the Weight per item in kg

 ∑ the Number Ordered

 ∑ the Shipping Zone (1 letter, indicating the distance to the
purchaser)

 Processing
 The program will read each line from the user and calculate the

following:

 Total Weight = Weight Per Item * Number Ordered

 Weight Cost = 3.40 + Total Weight / 5.0

 Shipping cost is calculated as follows:

 If Shipping Zone is ‘A’

 Then Shipping Cost is 3.00

 If Shipping Zone is ‘B’

 Then Shipping Cost = 5.50

 If Shipping Zone is ‘C’

 Then Shipping Cost = 8.75

 Otherwise Shipping Cost is 12.60

 Handling Charges = 4.00, a constant

 New Number On Hand = Number On Hand Number Ordered

 Discount is calculated as follows:
 If New Number On Hand < 0

 Then Discount = 5.00

 Else Discount = 0

 Here the purchaser is being given a discount if the item has to be
repeat ordered. Total cost is calculated as follows:

 Total Cost

 = Price of Each * Number Ordered +

 Handling Charge + Weight Cost +

 Shipping Cost – Discount

 For each purchase, print out the information about the purchase
in a format approximately like this:

 Item Number: 345612

 Number Ordered: 1

 Number On Hand: 31

 Price of Each: 19.95

 Weight of Each: 3

 Shipping Zone: A

 Total Cost: 30.95

 After all the purchases are nished, print two lines stating the
total number of purchases and the total cost of all purchases.

 22. Fill in the blanks.

 (i) A program owchart indicates the __________ to be
performed and the __________ in which they occur.

 (ii) A program owchart is generally read from __________ to
__________.

 (iii) Flowcharting symbols are connected together by means of
__________.

 (iv) A decision symbol may be used in determining the
__________ or __________ of two data items.

 (v) __________ are used to join remote portions of a
 owchart.

 (vi) __________ connectors are used when a owchart ends
on one page and begins again on another page.

 (vii) A __________ symbol is used at the beginning and end of
a owchart.

 (viii) The owchart is one of the best ways of __________ a
program.

 (ix) To construct a owchart, one must adhere to prescribed
symbols provided by the __________.

 (x) The programmer uses a __________ to aid him in drawing
 owchart symbols.

 23. De ne a owchart. What is its use?

 24. Are there any limitations of a owchart?

 25. Draw a owchart to read a number given in units of length and
print out the area of a circle of that radius. Assume that the value
of pi is 3.14159. The output should take the form: The area of a
circle of radius __________ units is __________ units.

 26. Draw a owchart to read a number N and print all its divisors.

 27. Draw a owchart for computing the sum of the digits of any given
number.

 28. Draw a owchart to nd the sum of N odd numbers given.

© Oxford University Press. All rights reserved.

38 Programming in C

 29. Draw a owchart to compute the sum of squares of integers from
1 to 50.

 30. Write a program to read two integers with the following
signi cance.

 The rst integer value represents a time of day on a 24-hour
clock, so that 1245 represents quarter to one mid-day.

 The second integer represents a time duration in a similar way,
so that 345 represents three hours and 45 minutes.

 This duration is to be added to the rst time and the result printed
out in the same notation, in this case 1630 which is the time 3
hours and 45 minutes after 1245.

 Typical output might be start time is 1415. Duration is 50. End
time is 1505.

CASE STUDY

Problem Statement
Write an algorithm to compute and print the sum of the following series:

- + - +
3 5 7

3! 5! 7!
x x x

x

Analysis
From the problem statement, it is evident that the value of x and the
number of terms to be summed up should be taken as input and the
sum has to be printed.

Analyzing the expression for the above series, it is seen that the
powers and the factorials vary in the sequence 1, 3, 5, 7, …
Thus,

1!
x

◊ ◊= = ◊
◊ ◊ ◊

3 2

3! 3 2 1 1! 3 2
x x x x x x

◊ ◊ ◊ ◊= = ◊
◊ ◊ ◊ ◊ ◊

5 3 2

5! 5 4 3 2 1 3! 5 4
x x x x x x x x

◊ ◊ ◊ ◊ ◊ ◊= = ◊
◊ ◊ ◊ ◊ ◊ ◊ ◊

7 5 2

7! 7 6 5 4 3 2 1 5! 7 6
x x x x x x x x x x

and so on.
Therefore each term in the given series can be described as

Tk = Tk 1 × t,
where Tk is the kth term and Tk – 1 is the (k 1)th term, while the

variable t for each of the terms are:

◊ ◊ ◊ ◊

2 2 2 2

, , , ,
3 2 5 4 7 6 9 8
x x x x

respectively. So t can be described by the general form

-

2

. (1)
x

i i
for i = 3, 5, 7, 9, ◊ ◊ ◊ ◊ ◊ ◊ ◊ ◊ ◊

The following expression can be used repetitively to generate the
positive and negative sign for the alternative terms:

sign = –1 × sign

The initial value of k should be 1. At each iteration, 2 is added to k
so that the values of k is generated as 3, 5, 7, …. and so on. For each
iteration, the term is given by the following statement.

T = (–1) * T * x * x / (i * (i 1))

The initial value of T is x. The sum of terms should be calculated
by the statement S = S + T.

The initial value of S is 0.
Having evolved the above expressions, the following statements

should be repeated for N times, where N is the number of terms to be
summed up to give the nal sum of the series.

S = S + T
i = i + 2
T = (1) * T * x * x / (i * (i 1))

The number of iterations can be controlled by using a counter vari-
able c. It may be initialized to 1 and the iterations should continue for
the values 1, 2, 3, 4, … N.

Here i can be used to control the iteration. The value of i varies
in the sequence 1, 3, 5, 7, … It is therefore clear that to repeat the
iteration twice, the values of i should be 1 and 3. To iterate thrice,
the values of i should be 1, 3 and 5. To repeat the statements four
times, the values of i should be 1, 3, 5, and 7. Thus it is obvious that
the nal value of i is just one short of the twice the number of repeti-
tions. Therefore, the condition for which iteration should continue is
given by the expression i N * 2. Finally the algorithm is created
as shown below.

Algorithm
 1. START
 2. PRINT “ENTER THE VALUE OF X”
 3. INPUT X
 4. PRINT “HOW MANY TERMS?”
 5. INPUT N

 6. I 1

 7. T X

 8. S 0

 9. S S + T

 10. I I + 2

 11. T (-1)*T*X*X/(I*(I-1))

 12. IF I N*2 THEN GOTO 9
 13. PRINT S
 14. STOP

© Oxford University Press. All rights reserved.

	Blank Page

