
Professor
Department of Computer Engineering

YMCA University of Science and Technology
Faridabad

Software
Testing

PRINCIPLES AND PRACTICES

SECOND EDITION

Naresh Chauhan

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

3
Oxford University Press is a department of the University of Oxford.

It furthers the University’s objective of excellence in research, scholarship,
and education by publishing worldwide. Oxford is a registered trade mark of

Oxford University Press in the UK and in certain other countries.

Published in India by
Oxford University Press

YMCA Library Building, 1 Jai Singh Road, New Delhi 110001, India

© Oxford University Press 2010, 2016

The moral rights of the author/s have been asserted.

First Edition published in 2010
Second Edition published in 2016

All rights reserved. No part of this publication may be reproduced, stored in
a retrieval system, or transmitted, in any form or by any means, without the

prior permission in writing of Oxford University Press, or as expressly permitted
by law, by licence, or under terms agreed with the appropriate reprographics

rights organization. Enquiries concerning reproduction outside the scope of the
above should be sent to the Rights Department, Oxford University Press, at the

address above.

You must not circulate this work in any other form
and you must impose this same condition on any acquirer.

ISBN-13: 978-0-19-946587-3
ISBN-10: 0-19-946587-8

Typeset in BaskervilleBE
by MacroTex Solutions, Chennai

Printed in India by Magic International (P) Ltd, Greater Noida

Third-party website addresses mentioned in this book are provided
by Oxford University Press in good faith and for information only.

Oxford University Press disclaims any responsibility for the material contained therein.

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

To
 my parents

 who have made me capable
 to struggle in this world

3
Oxford University Press is a department of the University of Oxford.

It furthers the University’s objective of excellence in research, scholarship,
and education by publishing worldwide. Oxford is a registered trade mark of

Oxford University Press in the UK and in certain other countries.

Published in India by
Oxford University Press

YMCA Library Building, 1 Jai Singh Road, New Delhi 110001, India

© Oxford University Press 2010, 2016

The moral rights of the author/s have been asserted.

First Edition published in 2010
Second Edition published in 2016

All rights reserved. No part of this publication may be reproduced, stored in
a retrieval system, or transmitted, in any form or by any means, without the

prior permission in writing of Oxford University Press, or as expressly permitted
by law, by licence, or under terms agreed with the appropriate reprographics

rights organization. Enquiries concerning reproduction outside the scope of the
above should be sent to the Rights Department, Oxford University Press, at the

address above.

You must not circulate this work in any other form
and you must impose this same condition on any acquirer.

ISBN-13: 978-0-19-946587-3
ISBN-10: 0-19-946587-8

Typeset in BaskervilleBE
by MacroTex Solutions, Chennai

Printed in India by Magic International (P) Ltd, Greater Noida

Third-party website addresses mentioned in this book are provided
by Oxford University Press in good faith and for information only.

Oxford University Press disclaims any responsibility for the material contained therein.

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

A software is never complete until it is tested. It doesn’t matter how many functionalities we are incor-
porating in it or what the latest technology we are using is. If a particular software has not been tested
properly and thoroughly, it may lead to failure of the software. The importance of software testing has
increased in the past few years with the increase in complexity in the nature of the software and the
introduction of new technologies. The industry has also established many quality standards including
development of many contemporary software testing techniques, for example, Agile testing. This sec-
ond edition of Software Testing has been developed, keeping in view these technological developments.
This edition has been updated thoroughly with greater topical coverage. The recent research in testing
techniques has also been introduced.

New to the Second Edition

The following are the most notable additions in this edition:

�� A chapter on Agile Testing focusing on the testing methodology, which has gained importance in
recent years

Many new sections have been added in this edition. The following are the details:

�� Chapter 1: It introduces the concept of positive and negative testing and provides a table which
summarizes the differences between these testing methods.
�� Chapter 2: Tables 2.4–2.6 summarize the differences between manual and automated testing,

static and dynamic testing, and black-box and white-box testing, respectively.
�� Chapters 4 and 5: The coverage of dynamic testing techniques has been strengthened, with the

inclusion of robust worst-case testing method, orthogonal array testing strategy, predicate cover-
age, and path sensitization. New examples have been included to illustrate the concepts.
�� Chapter 7: It presents the concept of reliability testing and the metrics used to measure software

reliability.
�� Chapter 12: New test case prioritization techniques based on data flow, module-coupling slice,

and program structure analysis have been included in this chapter.
�� Chapter 14: To understand the design of system test cases, a case study of the parking manage-

ment system has been included. The chapter also discusses regression testing in object-oriented
systems.
�� Chapter 18: A new section on capability maturity model integration (CMMI) has been included

which lists the key process areas of CMMI.
�� The content from the CD that accompanied the first edition has been uploaded on the Oxford

University Press India website (https://india.oup.com/orcs/9780199465873) from where this
can be accessed easily.
�� The website also contains an appendix which provides an overview of the working environment

and components of CAST tools such as JMeter, JUnit, and Selenium.

Preface to the Second Edition

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

vi    Preface

Content and Coverage

The book has been divided into seven parts. Each part further consists of various chapters.

Part I (Testing Methodology) introduces concepts such as effective software testing, testing terminol-
ogy, testing as a process, and development of testing methodology.

Chapter 1 introduces the concept of effective testing versus complete testing, explains the psychology
for performing effective testing, and establishes that software testing is a complete process.

Chapter 2 discusses the commonly used testing terminology (error, bug, and failure), explains the life
cycle of a bug with its various states, the phases of software testing life cycle and V testing model, and
development of a testing methodology.

Chapter 3 explains how verification and validation, a part of testing strategy, are performed at various
phases of SDLC.

Part II (Testing Techniques) deals with various test case design techniques based on static testing and
dynamic testing and verification and validation concepts.

Chapter 4 covers test case design techniques using black-box testing including boundary value analy-
sis, equivalence class partitioning method, state table-based testing, decision table-based testing, and
cause–effect graphing technique.

Chapter 5 discusses test case design techniques using white-box testing, including basis path testing,
loop testing, data flow testing, and mutation testing.

Chapter 6 deals with the techniques, namely inspection, walkthrough, and reviews, largely used for
verification of various intermediate work products resulting at different stages of SDLC.

Chapter 7 discusses the various techniques used in validation testing such as unit testing, integration
testing, function testing, system testing, and acceptance testing.

Chapter 8 describes regression testing that is used to check the effect of modifications on other parts of
software.

Part III (Managing the Testing Process) discusses how to manage the testing process, the various
persons involved in the test organization hierarchy, testing metrics to monitor and control the testing
process, and how to reduce the number of test cases.

Chapter 9 covers the concept of introduction of management of the test process for its effectiveness.
The various people involved in the test management hierarchy are discussed. The test planning for
various verification and validation activities are also discussed along with the test result specifications.

Chapter 10 provides an introductory material to understand that measurement is a necessary part of
software engineering, known as software metrics.

Chapter 11 explains how software metrics assist in monitoring and controlling different testing activi-
ties.

Chapter 12 explains the fact that test cases, specially designed for system testing and regression testing,
become unmanageable in a way that we cannot test all of them. The problem is to select or reduce the
test cases out of a big test suite. This chapter discusses many such techniques to resolve the problem.

Part IV (Test Automation) discusses the need of testing and provides an introduction to testing tools.

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

viiPreface    l

Chapter 13 explains the need for automation, categories of testing tools, and the selection of a testing
tool.

Part V (Testing for Specialized Environments) introduces the testing environment and the issues
related to two specialized environments, namely object-oriented software and Web-based software. It
also explores testing of agile-based software.

Chapters 14 and 15 discuss the issues, challenges, and techniques related to object-oriented and Web-
based software, respectively.

Chapter 16 focuses on Agile testing methodology which has gained importance in recent years.

Part VI (Tracking the Bug) explains the process and techniques of debugging.

Chapter 17 covers the debugging process and discusses the various methods to debug a software prod-
uct.

Part VII (Quality Management) covers software quality issues with some standards, along with test-
ing process maturity models.

Chapter 18 discusses the various terminologies, issues, and standards related to software quality man-
agement to produce high-quality software.

Chapter 19 discusses various test process maturity models, namely test improvement model (TIM), test
organization model (TOM), test process improvement (TPI), and test maturity model (TMM).

Acknowledgements
The second edition of the book is mainly inspired by new research in the field of Software Testing.
For developing the text of this edition, I thank all my research scholars for their contribution, directly
or indirectly. I thank Dr Rashmi, Dr Preeti, Dr Anita, Sh. Vedpal, Sh. Harish Kumar, and Sh. Mu-
nish Khanna, who supported me throughout the development of this edition. Further, some of the
methods/techniques have been improved in this edition. This has been made possible because of the
constructive feedback from my students. I therefore thank all my students, all of whom helped me in
reviewing and updating the topics.

Next, I thank and congratulate the OUP team who inspired me to work on the second edition of the
book. I place on record my special thanks to all the team members and reviewers involved in this
project. Finally, I thank my wife and children, whose persistent love and support were essential for
completion of this edition.

–Naresh Chauhan

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

There is no life without struggles and no software without bugs. Just as one needs to sort out the prob-
lems in one’s life, it is equally important to check and weed out the bugs in software. Bugs cripple
the software in a way problems in life unsettle one. In our life, both joys and sorrows are fleeting. But
a person is best tested in times of crises. One who cultivates an optimistic outlook by displaying an
equipoise taking prosperity as well as adversity in his stride and steadily ventures forth on a construc-
tive course is called a sthir pragna. We should follow the same philosophy while testing software too.
We need to develop an understanding that unless these bugs appear in our software and until we weed
out all of them, our software will not be robust and of superior quality. So, a software test engineer
should be an optimist who welcomes the struggles in life and similarly bugs in software, and takes
them head on.
Software engineering as a discipline emerged in the late 1960s to guide software development activi-
ties in producing quality software. Quality here is not a single-dimensional entity. It has several fac-
tors including rigorous software testing. In fact, testing is the critical element of quality and consumes
almost half the total development effort. However, it is unfortunate that the quality and testing process
does not get its due credit. In software engineering, testing is considered to be a single phase operation
performed only after the development of code wherein bugs or errors are removed. However, this is
not the case. Testing is not just an intuitive method to remove the bugs, rather it is a systematic process
such as software development life cycle (SDLC). The testing process starts as soon as the first phase
of SDLC starts. Therefore, even after learning many things about software engineering, there are still
some questions and misconceptions regarding the testing process which need to be known, such as the
following:

�� When should testing begin?

�� How much testing is practically possible?

�� What are the various techniques to design a good test case (as our knowledge is only limited to
black-box and white-box techniques)?

Moreover, the role of software testing as a systematic process to produce quality software is not rec-
ognized on a full scale. Many well-proven methods are largely unused in industries today. Companies
rely only on the automated testing tools rather than a proper testing methodology. What they need
to realize is that Computer-Aided Software Engineering (CASE) environments or tools are there only
to assist in the development effort and not meant to serve as silver bullets! Similarly, there are many
myths that both students and professionals believe in, which need to be exploded. The present sce-
nario requires software testing to be acknowledged as a separate discipline from software engineering.
Some universities have already started this course. Therefore, there is a need for a book that explains
all these issues for the benefit of students who will learn software testing and become knowledgeable
test engineers as also for the benefit of test engineers who are already working in the industries and
want to hone their testing skills.

Preface to the First Edition

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

x    Preface

About the Book

This book treats software testing as a separate discipline to teach the importance of testing process both
in academia as well as in the industry. The book stresses on software testing as a systematic process and
explains software testing life cycle similar to SDLC and gives insight into the practical importance of
software testing. It also describes all the methods/techniques for test case design which is a prime issue
in software testing. Moreover, the book advocates the notion of effective software testing in place of
exhaustive testing (which is impossible).
The book has been written in a lucid manner and takes a practical approach to designing test cases,
and targets undergraduate and postgraduate students of computer science and engineering (B. Tech.,
M. Tech., MCA), and test engineers. It discusses all the software testing issues and gives insight into
their practical importance. Each chapter starts with the learning objectives and ends with a summary
containing a quick review of important concepts discussed in the chapter. Some chapters provide
solved examples in between the theory to understand the method or technique practically at the same
moment. End-chapter exercises and multiple-choice questions are provided to assist instructors in
classroom teaching and students in preparing better for their exams.

The key feature of the book is a fully devoted case study on Income Tax Calculator which shows how
to perform verification and validation at various phases of SDLC. The case study includes ready-to-use
software and designing of test cases using the techniques described in the book. This material will help
both students and testers understand the test design techniques and use them practically.
Apart from the above-mentioned features, the book follows the following methodology in defining key
concepts in software testing:

�� Emphasis on software testing as a systematic process

�� Effective testing concepts rather than exhaustive complete testing

�� A testing strategy with a complete roadmap has been developed that shows which software test-
ing technique with how much risk assessment should be adopted at which phase of SDLC

�� Testing models

�� Verification and validation as the major components of software testing process. These have
been discussed widely in separate chapters.

�� Software testing life cycle along with bug classification and bug life cycle

�� Complete categorization of software testing techniques such as static testing and dynamic testing
encompassing different chapters

�� Testing techniques with solved examples to illustrate how to design test cases using these tech-
niques

�� Extensive coverage of regression testing, software testing metrics, and test management

�� Efficient test suite management to prioritize test cases suitable for a project

�� The appropriate use of testing tools

�� Software quality management and test maturity model (TMM)

�� Testing techniques for two specialized environments: object-oriented software and Web-based
software

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

xiPreface    l

Acknowledgements
I am thankful to God for making things possible at the right time always.

Big projects are not developed overnight. Some ideas always incubate in our subconscious and take
a definite shape gradually. However, these ideas do not develop on their own; they take shape as a
result of constant learning and interaction between individuals and great personalities. I would like
to acknowledge these personalities who have inspired me directly or indirectly to work on this book.

I express my sincere gratitude to my school teacher, Sh. Girish Kumar, who gave me the necessary
foundation for everything ahead. He has always been a role model to me.

Next, I would like to thank my Guru, Pandit Priyadutt Shastri, for realizing life with a totally differ-
ent viewpoint and was the turning point in my life. The principles that I learnt from these two persons
will always be my moral support in any project.

The technical roots behind writing this book date back to the days when I was working in the
Central Research Laboratory (Bharat Electronics Ltd., Ghaziabad), where I learnt many practical tech-
niques of software testing. But for the critical learning support of Sh. K. Johri (Scientist at Central
Research Laboratory, Ghaziabad) I would not have learnt this discipline. All that I learnt there has
helped me a lot in writing this book. He always used to say, ‘Welcome the bugs; do not hide them.’
While explaining the psychology of software testing, I kept this in mind.

I express my profound gratitude to Dr A.K. Sharma, Chairman (Computer Engg.), YMCA Univer-
sity of Science and Technology, Faridabad, who showed me the path of research and technical writing
during the research work performed under him. I am extremely grateful to all my colleagues with
whom I discussed many issues. Many thanks to my students, Sandeep Rana, Anita, Harsh, InduBala,
and all others for their contribution towards completing this book.

I am indebted to my family for their love, encouragement, and support throughout my education.
I am also thankful for all the support received from my parents-in-law.

I owe a lot to my dear wife, Anushree, who had to make many compromises to allow me to com-
plete this book. I am thankful for her never-ending patience, unconditional moral support, and peace-
ful environment at home. Without her friendship and love, this book would not have been completed.
I express my heartfelt gratitude to my dear daughter, Smiti, for her love and encouragement.

Finally, I extend my gratitude to the editorial staff at Oxford University Press for their support.

Thanks to all of you!

–Naresh Chauhan

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

Features of

Coverage

The book provides a comprehensive cover-
age of topics ranging from different software
testing techniques to software quality manage-
ment.

Software testing has always been considered a single phase
performed after coding. However, time has proved that
our failures in software projects are mainly due to the fact
that we have not realized the role of software testing as a
process. Thus, its role is not limited to only a single phase
in the software development life cycle (SDLC), but it starts
as soon as the requirements in a project have been gath-
ered.

Complete software testing has also been perceived for
a long time. Again, it has been proved that exhaustive
testing is not possible and we should shift our attention
to effective testing. Thus, effective and early testing con-
cepts build our testing methodology. Testing methodology
shows the path for successful testing. This is the reason
that parallel to SDLC, software testing life cycle (STLC)
has also been established now.

The testing methodology is related to many issues. All
these issues have been addressed in this part. The goals
of software testing, the mindset required to perform test-
ing, clear-cut definitions of testing terminology, phases of
STLC, development of testing methodology, verification
and validation, etc. have been discussed in this part.
This part will lay the foundation for the following con-
cepts:

�� Effective testing, not exhaustive testing.
�� Software testing is an established process.
�� Testing should be done with the intention of finding

more and more bugs, not hiding them.

010101001010100101010
1010101101010110101011010101
010101001010100101010
101010110101011010101

PART
ONE
CHAPTER 1:
Introduction to Software Testing

CHAPTER 2:
Software Testing Terminology and
Methodology

CHAPTER 3:
Verification and Validation

Testing
Methodology

In Part I, we have discussed the fundamentals of effective
software testing and how to develop a testing methodol-
ogy. After devising a testing strategy, we need various test-
ing techniques so that we can design test cases in order to
perform testing. There are two views of testing techniques:
one view is to categorize based on verification and valida-
tion; another is based on static and dynamic testing. We
have seen the general strategy of performing verification
and validation in Part I. The techniques for verification and
validation have been discussed in this part.

Static testing largely maps to verification and dynamic
testing to validation. Static testing is performed without ex-
ecuting the code, and dynamic testing is performed with
the execution of code. Dynamic testing techniques, namely
black-box and white-box techniques, are very popular. We
have tried to include every possible method under these cat-
egories.

Regression testing is a big problem in software testing.
Whenever we make modifications, we need to execute all
the test cases designed earlier as well as some new cases to
check the modifications and whether these changes have
affected other parts of the software. It becomes a problem
as the test suite becomes too large to test. Regression test-
ing is a hot topic for researchers. We have included this
testing in techniques so as to define it properly and seek
some techniques to deal with it.

This part will lay the foundation for the following con-
cepts:

CHAPTER 4:
Dynamic Testing: Black-box
Testing Techniques

CHAPTER 5:
Dynamic Testing: White-box
Testing Techniques

CHAPTER 6:
Static Testing

CHAPTER 7:
Validation Activities

CHAPTER 8:
Regression Testing

0101010
1010101
0101010
1010101

PART
TWO

Testing
Techniques

Case Study

A case study on Income Tax calculator is in-
cluded after the last chapter which demon-
strates how verification and validation can be
performed at various stages of SDLC.

1 IntroDuCtIon to CASe StuDy

All the techniques learnt in this book can be practised using a case study. For this purpose, a case
study of Income Tax Calculator application has been taken. The application has been designed and
developed for the readers and all the test case design techniques have been applied on it. However, the
application presented and implemented is only for illustrative purposes and it is not claimed that this
application is free from defects and can be used practically for calculating the income tax of a person.
The idea is only to present a working application and show how to perform testing on it.

The case study has been presented in the following sequence:

Requirement Specifications and Verification
The requirements for the case study have been collected and SRS ver 1.0 was prepared initially.
The tax slabs and other details in this case study have been compiled from www.incometaxindia.gov.in.
This draft of SRS was in a raw form. After this, verification on SRS ver 1.0 was performed and found
that many features were not present in SRS. During verification on SRS, the checklist presented in
Appendix B has been used. The readers are advised that they should also perform verification using
checklists and find some more deficiencies in SRS. In this way, SRS ver 2.0 was prepared as a result of
verification on SRS ver 1.0. Another round of verification was performed on SRS ver 2.0 and finally
we get SRS ver 3.0.

The readers are advised to prepare an SDD of this application and perform verification exercises
on it to and get a final version of SDD.

Black-box Testing on SRS ver 3.0
Once the SRS is prepared, some black-box test cases have been designed using the techniques
studied in Chapter 4. The test cases can be executed on the implemented executable application. The
executable application files are available on the Oxford University Press (OUPI) website (https://
india.oup.com/orcs/9780199465873/).

Source Code
The application based on SRS ver 3.0 has been implemented in C language. There are two files:
TaxCalculator.c and Taxcalculator.h. The readers can get these files directly from the OUPI website
and use and modify them the way they want.

Income Tax Calculator: A Case Study

Summary

A list of key topics at the end of each chapter
helps readers to revise all the important con-
cepts explained in the chapter.

245 Test Management l

�� Summary of activities All testing execution activities and events are mentioned with resource
consumption, actual task durations, etc.

�� Approvals List the names of the persons who approve this document with their signatures and dates.

SuMMAry

Testing is not an intuitive process. It is a systematic, well-defined process. Therefore, it needs complete
management. There should be a hierarchy of testing persons in the test organization with well-defined roles.
Testing activities start with proper planning and continue with detailed test design specifications to result
specifications. The idea is to plan and document the steps of STLC according to which the tester works. The
tester plans, designs, executes the test cases, and reports the test results.

This chapter discusses the test organization with the hierarchy of every testing person. A general test plan’s
components have been described. A master plan including verification and validation plan is also needed for
testing a software. The verification plan and validation test plan at every stage–unit test plan, integration test
plan, and system test plan, have also been discussed in this chapter.

The test case specifications along with test design specifications are discussed for designing the test cases.
After the test case execution, the test results should also be reported. Test reporting exists in three main docu-
ments namely–test log, test incident report, and test summary report. All these testware have been explained
in detail with their specifications.

Let us review the important concepts described in this chapter:

 • Project manager is a key person in the testing group who interacts with project management, quality
assurance, and marketing staff.

 • Test leader leads a team of test engineers who work at the leaf-level of the hierarchy.

 • Test engineers work under the lead of the test leader and are responsible for designing, developing, and
maintaining test cases.

 • Junior test engineers are newly hired testers. They usually go for training to learn the test strategy, test
process, and testing tools.

 • A test plan is defined as a document that describes the scope, approach, resources, and schedule of
intended testing activities.

 • Master test plan provides the highest level description of verification and validation efforts and drives
the testing at various levels.

 • Unit test is provided by the module developer. He prepares a test harness to identify the interfaces be-
tween the unit to be tested and other units.

 • Integration test plan specifies the necessary steps needed to integrate individual modules and test the
integration. It helps the technical team to think through the logical sequence of integration activities.

 • Function test plan specifies the requirements for a bare-minimum functioning of the system. The plan
must be ready with a traceability matrix that maps every function to its requirement and a list of func-
tions to be tested.

 • A system test plan is a systematic approach for testing a system containing a detailed understanding
of what the eventual workflow will be. For this system, test cases are divided into some categories (re-
covery, security, performance, compatibility, etc.), according to which the system test plan is described.

 • Acceptance test plan must have all the acceptance criteria defined in one document. If they are not avail-
able, then prepare them and plan the acceptance test accordingly. Another point in acceptance testing plan
is to decide the criticality of acceptance feature defined. It is necessary to define the criticality so as to en-
sure that the system does not pass the accepted test, if it has failed in high critical acceptance requirement.

 • Test log is a record of the testing events that take place during a test.

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

the Book

Objective Questions

Multiple-choice questions are provided at
the end of each chapter to facilitate revision.
Answers to these questions are provided in
Appendix A.

310 Software Testing: Principles and Practices

 12.1 If the test suite is inadequate for retesting,
then .

 (a) new test cases may be developed and
added to the test suite

 (b) existing test suite should be modified ac-
cordingly

 (c) old test suite should be discarded and an
altogether new test suite should be devel-
oped

 (d) none of these

 12.2 The size of a test suite as the
software evolves.

 (a) decreases

 (b) increases

 (c) remains same

 (d) none of these

 12.3 Coverage is measured in terms of the
 that are imposed.

 (a) requirements

 (b) design

 (c) test cases

 (d) none of these

 12.4 In the prioritization scheme, the main guide-
line is to ensure that priority test
cases do not cause any severe impacts on
the software.

 (a) high

 (b) low

 (c) medium

 (d) none of these

 12.5 Automatic test generation often results in
 test sets.

 (a) larger

 (b) smaller

 (c) medium size

 (d) none of these

 12.6 The set of statements executed under a test
case, having an effect on the program output
under that test case, is called .

 (a) execution slice

 (b) dynamic slice

 (c) relevant slice

 (d) none of these

 12.7 The set of statements executed under a test
case is called .

 (a) execution slice

 (b) dynamic slice

 (c) relevant slice

 (d) none of these

 12.8 The set of statements that were execut-
ed under a test case and did not affect the
output, but have the potential to affect the
output produced by a test case is known as

.

 (a) execution slice

 (b) dynamic slice

 (c) relevant slice

 (d) none of these

 12.9 Which one is true?

 (a) APFD = 1 + ((TF1 + TF2 + … + TFm) / nm) + 1/2n

 (b) APFD = 1− ((TF1 + TF2 + … + TFm) / nm) + 1/3n

 (c) APFD = 1− ((TF1 + TF2 + … + TFm) / nm) + 1/2n

 (d) none of these

exerCISeS

MultIPle-ChoICe QueStIonS

revIew QueStIonS

 12.1 What is the need for minimizing the test cas-
es in a project?

 12.2 Develop a priority category scheme for the test
cases to be executed in a project that deals
with all kinds of priorities set in that project.

 12.3 Identify some potential problems in a project.
Mark them on a scale of 1 to 10 for uncer-

tainty factor and risk impact. Prepare its risk
table.

 12.4 Explain the following with examples:

 (a) Total statement coverage prioritization

 (b) Additional statement coverage prioritiza-
tion

Examples

The book balances theory with practice by
including solved examples that illustrate the
practical implementation of the method or
technique being studied.

240 Software Testing: Principles and Practices

actual values for input with expected outputs. One test case can be used for many design specifications
and may be re-used in other situations. A test case specification should have the following components
according to IEEE recommendation [56]:

Test case specification identifier A unique identifier is assigned to each test case specification with a
reference to its associated test plan.

Purpose The purpose of designing and executing the test case should be mentioned here. It refers to
the functionality you want to check with this test case.

Test items needed List the references to related documents that describe the items and features, for
example, SRS, SDD, and user manual.

Special environmental needs In this component, any special requirement in the form of hardware or
software is recognized. Any requirement of tool may also be specified.

Special procedural requirements Describe any special condition or constraint to run the test case, if any.

Inter-case dependencies There may be a situation that some test cases are dependent on each other.
Therefore, previous test cases that are run prior to the current test case must be specified.

Input specifications This component specifies the actual inputs to be given while executing a test case.
The important thing while specifying the input values is not to generalize the values, rather specific values
should be provided. For example, if the input is in angle, then the angle should not be specified as a range
between 0 and 360, but a specific value like 233 should be specified. If there is any relationship between
two or more input values, it should also be specified.

Test procedure The step-wise procedure for executing the test case is described here.

Output specifications Whether a test case is successful or not is decided after comparing the output
specifications with the actual outputs achieved. Therefore, the output should be mentioned complete
in all respects. As in the case of input specifications, output specifications should also be provided in
specific values.

 Example 9.1

There is a system for railway reservation system. There are many functionalities in the system, as given
below:

S. No. Functionality Function ID in SRS Test cases

1 Login the system F3.4 T1

2 View reservation status F3.5 T2

3 View train schedule F3.6 T3

4 Reserve seat F3.7 T4

5 Cancel seat F3.8 T5

6 Exit the system F3.9 T6

Suppose we want to check the functionality corresponding to ‘view reservation status’. Its test spec-
ification is given in Fig. 9.4.

CAST Tools

An appendix on popular CAST tools, avail-
able online (https://india.oup.com/orcs/
9780199465873), shows the working environ-
ment and components of tools such as JMeter,
JUnit, and Selenium.

FPO

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

Companion Online Resources

Step 1: Getting Started
 Go to india.oup.com

Step 2: Browse quickly by
 BASIC SEARCH

o AUTHOR
o TITLE
o ISBN

 ADVANCED SEARCH
o KEYWORDS
o AUTHOR
o TITLE
o SUBTITLE
o PUBLICATION DATE

Step 5: Sign in with your Oxford ID

Step 3: Select title
 Select Product
 Select Online Resources

Step 7: Fill in your details
 Fill the detailed

registration form with
correct particulars.

 Fields marked with ‘*’
in the form are
mandatory.

 Update

Step 4: View Resources
 Click on “View all

resources”

Step 6: if you do not have an Oxford ID, register with us

Step 8: Validation
 We shall revert to you

within 48 hours after
verifying the details
provided by you. Once
validated, please login
using your username
and password and
access the resources.

Step 10: Visit us again
 Go to india.oup.com
 Sign in with Oxford ID

Step 9: Confirmation
 You will receive a

confirmation on your
email ID.

Step 12: Download Resources
 Click on the title
 View online resources
 Select resource type
 Download the resource you require

Step 11: Visit your licensed products
 Go to “Resources” section

Steps to register and access Online Resources

Resources for instructors and students are developed to complement each textbook and vary from book to book.

For any further queries, please write to us at HEMarketing.in@oup.com with your mobile number.

Visit india.oup.com/orcs/9780199465873 to access
teaching and learning solutions online.

Online Resources
� e following resources are available to support the
faculty and students using this text:

For Faculty
• Chapter PowerPoint Slides
• Case Study and its Source/Executable Files
• Appendix on Popular CAST tools

For Students
• Checklists
• Executable Files of Programs in the Book
• Case Study and its Source/Executable Files
• Appendix on Popular CAST tools

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

Appendix on Popular CAST Tools
This appendix (available online at https://india.oup.com/orcs/9780199465873) exemplifies the
discussion on automation and testing tools by introducing the working of three testing tools which are
being used commercially these days. The tools covered are JUnit, JMeter, and Selenium. While JUnit
is used for unit testing, the latter two are used for functional and performance testing. This appendix
helps readers to build automated web tests using these tools.

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

Preface  v
Features of the Book  xii
Online Resources  xiv
Detailed Contents  xix

PART 1:  Testing Methodology� 1

   1.  Introduction to Software Testing� 3

   2.  Software Testing Terminology and Methodology� 25

   3.  Verification and Validation� 51

PART 2:  Testing Techniques� 67

   4.  Dynamic Testing: Black-box Testing Techniques� 69

   5.  Dynamic Testing: White-box Testing Techniques� 115

   6.  Static Testing� 160

   7.  Validation Activities� 179

   8.  Regression Testing� 212

PART 3:  Managing the Test Process� 223

   9.  Test Management� 225

10.  Software Metrics� 248

 11. � Testing Metrics for Monitoring and
Controlling the Testing Process� 259

12.  Efficient Test Suite Management� 286

PART 4:  Test Automation� 313

13.  Automation and Testing Tools� 315

PART 5:  Testing for Specialized Environments� 325

14.  Testing Object-oriented Software� 327

15.  Testing Web-based Systems� 356

Brief Contents

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

xviii    Brief Contents

16.  Testing Agile-based Software� 375

PART 6:  Tracking the Bug� 389

17.  Debugging� 391

PART 7:  Quality Management� 399

18.  Software Quality Management� 401

19.  Testing Process Maturity Models� 425

Income Tax Calculator: A Case Study� 443

Appendices� 509

Appendix A  Answers to Multiple-choice Questions� 509

Appendix B � Software Requirement Specification (SRS) Verification Checklist� 511

Appendix C � High Level Design (HLD) Verification Checklist� 514

Appendix D � Low Level design (LLD) Verification Checklist� 516

Appendix E � General Software Design Document (SDD) Verification Checklist� 517

Appendix F � Generic Code Verification Checklist� 518

References  522

Index  529

About the Author  535

	

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

Preface � v
Features of the Book � xii
Online Resources � xiv
Brief Contents � xvii

PART 1:  Testing Methodology� 1

Detailed Contents

1.  Introduction to Software Testing� 3

	 1.1	 Introduction  3
	 1.2	 Evolution of Software Testing  4
	 1.3	 Software Testing—Myths and Facts  7
	 1.4	 Goals of Software Testing  8
	 1.5	 Psychology for Software Testing  10
	 1.6	 Software Testing Definitions  11
	 1.7	 Model for Software Testing  12
	 1.8	 Effective Software Testing vs

Exhaustive Software Testing  13
	 1.9	 Effective Testing is hard  17
	 1.10	 Software Testing as Process  18
	 1.11	 Schools of Software Testing  19
	 1.12	 Software Failure Case Studies  20

2. � Software Testing Terminology and
Methodology� 25

	 2.1	 Software Testing Terminology  25
		 2.1.1 � Definitions  26
		 2.1.2 � Life Cycle of Bugs  27
		 2.1.3 � States of Bugs  29
		 2.1.4 � Why do Bugs Occur?  29
		 2.1.5 � Bugs Affect Economics of Software

Testing  30
		 2.1.6 � Bug Classification Based on

Criticality  31
		 2.1.7 � Bug Classification Based on

SDLC  32
		 2.1.8 � Testing Principles  33

	 2.2	 Software Testing Life Cycle
(STLC)  35

	 2.3	 Software Testing Methodology  39
		 2.3.1 � Software Testing Strategy  39
		 2.3.2 � Test Strategy Matrix  40
		 2.3.3 � Development of Test Strategy  41
		 2.3.4 � Testing Life Cycle Model  42
		 2.3.5 � Validation Activities  43
		 2.3.6 � Testing Tactics  44
		 2.3.7 � Considerations in Developing Testing

Methodologies  46

3.  Verification and Validation� 51

	 3.1	 Verification and Validation
Activities  52

	 3.2	 Verification   54
		 3.2.1 � Checklists and Verification

Activities  55
	 3.3	 Verification of Requirements  55
		 3.3.1 � Verification of Objectives  56
		 3.3.2 � How to Verify Requirements and

Objectives  56
	 3.4	 Verification of High-level

Design  58
		 3.4.1 � How to Verify High-Level

Design  58
	 3.5	 Verification of Low-level Design  60
		 3.5.1 � How to Verify Low-level

Design  60

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

xx    Contents

	 3.6	 How to Verify Code  60
		 3.6.1 � Unit Verification  61

	 3.7	 Validation  62
		 3.7.1 � Validation Activities  62

PART 2:  Testing Techniques� 67

4. � Dynamic Testing: Black-box Testing
Techniques� 69

	 4.1	 Boundary Value Analysis
(BVA)  70

		 4.1.1 � Boundary Value Checking
(BVC)  70

		 4.1.2 � Robustness Testing Method  71
		 4.1.3 � Worst-case Testing Method  71
		 4.1.4 � Robust Worst-case Testing

Method  71
	 4.2	 Equivalence Class Testing  92
		 4.2.1 � Identification of Equivalent

Classes  92
		 4.2.2 � Identifying Test Cases  94
	 4.3	 State Table-based Testing  97
		 4.3.1 � Finite State Machine  97
		 4.3.2 � State Transition Diagrams or State

Graph  97
		 4.3.3 � State Table  98
		 4.3.4 � State Table-based Testing  98
	 4.4	 Decision Table-based Testing  100
		 4.4.1 � Formation of Decision

Table   101
		 4.4.2 � Test Case Design using Decision

Table  101
		 4.4.3 � Expanding Immaterial Cases in

Decision Table  104
	 4.5	 Cause–Effect Graphing-based

Testing   105
		 4.5.1 � Basic Notations for Cause–Effect

Graph  106
	 4.6	 Orthogonal Array Testing

Strategy  109
	 4.7	 Error Guessing  111

5. � Dynamic Testing: White-box Testing
Techniques� 115

	 5.1	 Need of White-box Testing  115
	 5.2	 Logic Coverage Criteria  116
	 5.3	 Basis Path Testing   117
		 5.3.1 � Control Flow Graph  118

		 5.3.2 � Flow Graph Notations for Different
Programming Constructs  118

		 5.3.3 � Path Testing Terminology  118
		 5.3.4 � Cyclomatic Complexity  119
		 5.3.5 � Predicate Coverage  134
		 5.3.6 � Path Sensitization  135
		 5.3.7 � Applications of Path Testing  136
	 5.4	 Graph Matrices  137
		 5.4.1 � Graph Matrix  137
		 5.4.2 � Connection Matrix  138
		 5.4.3 � Use of Connection Matrix in

Finding Cyclomatic Complexity
Number  139

		 5.4.4 � Use of Graph Matrix for Finding Set
of All Paths  140

	 5.5	 Loop Testing  141
	 5.6	 Data Flow Testing  142
		 5.6.1 � State of Data Objects  143
		 5.6.2 � Data-flow Anomalies  143
		 5.6.3 � Terminology Used in Data-flow

Testing  144
		 5.6.4 � Static Data-flow Testing  145
		 5.6.5 � Dynamic Data-flow

Testing   147
		 5.6.6 � Ordering of Data Flow Testing

Strategies   150
	 5.7	 Mutation Testing  150
		 5.7.1 � Primary Mutants  151
		 5.7.2 � Secondary Mutants  151
		 5.7.3 � Mutation Testing Process  153

6.  Static Testing� 160

	 6.1	 Inspections  161
		 6.1.1 � Inspection Team  162
		 6.1.2 � Inspection Process  162
		 6.1.3 � Benefits of Inspection Process  164
		 6.1.4 � Effectiveness of Inspection

Process  166
		 6.1.5 � Cost of Inspection Process  167
		 6.1.6 � Variants of Inspection Process  167
		 6.1.7 � Reading Techniques  172

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

xxiContents    l

		 6.1.8 � Checklists for Inspection Process  174
	 6.2	 Structured Walkthroughs  174
	 6.3	 Technical Reviews  175

7.  Validation Activities� 179

	 7.1	 Unit Validation Testing  180
	 7.2	 Integration Testing  184
		 7.2.1 � Decomposition-based

Integration  184
		 7.2.2 � Call Graph-based Integration  190
		 7.2.3 � Path-based Integration  192
	 7.3	 Function Testing  194
	 7.4	 System Testing  195
		 7.4.1 � Categories of System Tests  196
	 7.5	 Acceptance Testing  204
		 7.5.1 � Alpha Testing  206
		 7.5.2 � Beta Testing  206

8.  Regression Testing� 212

	 8.1	 Progressive vs Regressive Testing  212
	 8.2	 Regression Testing Producing Quality

Software  213
	 8.3	 Regression Testability  214
	 8.4	 Objectives of Regression Testing  214
	 8.5	 When Is Regression Testing

Done?  214
	 8.6	 Regression Testing Types  215
	 8.7	 Defining Regression Test Problem  215
		 8.7.1 � Is Regression Testing a

Problem?  216
		 8.7.2 � Regression Testing Problem  216
	 8.8	 Regression Testing Techniques  216
		 8.8.1 � Selective Retest Technique  216
		 8.8.2 � Regression Test Prioritization  220

PART 3:  Managing the Test Process� 223

9.  Test Management� 225

	 9.1	 Test Organization  226
	 9.2	 Structure of Testing Group  227
	 9.3	 Test Planning  228
		 9.3.1 � Test Plan Components  228
		 9.3.2 � Test Plan Hierarchy  232
		 9.3.3 � Master Test Plan  233
		 9.3.4 � Verification Test Plan  234
		 9.3.5 � Validation Test Plan  234
	 9.4	 Detailed Test Design and Test

Specifications  239
		 9.4.1 � Test Design Specification  239
		 9.4.2 � Test Case Specifications  239
		 9.4.3 � Test Procedure Specifications  241
		 9.4.4 � Test Result Specifications  241

10.  Software Metrics� 248

	 10.1	 Need of Software Measurement  249
	 10.2	 Definition of Software Metrics  249
	 10.3	 Classification of Software

Metrics  250
		 10.3.1 � Product vs Process Metrics  250
		 10.3.2 � Objective vs Subjective

Metrics  250
		 10.3.3 � Primitive vs Computed

Metrics  250
		 10.3.4 � Private vs Public Metrics  250

	 10.4	 Entities to be Measured  250
	 10.5	 Size Metrics  251
		 10.5.1 � Line of Code (LOC)  251
		 10.5.2 � Token Count (Halstead Product

Metrics)  251
		 10.5.3 � Function Point Analysis (FPA)  252

11. � Testing Metrics for Monitoring and
Controlling the Testing Process� 259

	 11.1	 Measurement Objectives for
Testing  260

	 11.2	 Attributes and Corresponding Metrics
in Software Testing  260

	 11.3	 Attributes   261
		 11.3.1 � Progress  261
		 11.3.2 � Cost  263
		 11.3.3 � Quality  264
		 11.3.4 � Size  267
	 11.4	 Estimation Models for Estimating

Testing Efforts  268
		 11.4.1 � Halstead Metrics  268
		 11.4.2 � Development Ratio Method  268
		 11.4.3 � Project-staff Ratio Method  269
		 11.4.4 � Test Procedure Method  269
		 11.4.5 � Task Planning Method  270
	 11.5	 Architectural Design Metric Used for

Testing  270

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

xxii    Contents

	 11.6	 Information Flow Metrics Used for
Testing  271

		 11.6.1 � Henry and Kafura Design
Metric   272

	 11.7	 Cyclomatic Complexity Measures for
Testing  272

	 11.8	 Function Point Metrics for
Testing  272

	 11.9	 Test Point Analysis (TPA)  273
		 11.9.1 � Procedure for Calculating TPA  274
		 11.9.2 � Calculating Dynamic Test

Points  274
		 11.9.3 � Calculating Static Test Points  276
		 11.9.4 � Calculating Primary Test

Hours  276
		 11.9.5 � Calculating Total Test Hours  278
	 11.10	 Some Testing Metrics  279

12.  Efficient Test Suite Management� 286

	 12.1	 Why Do Test Suites Grow?  286
	 12.2	 Minimizing Test Suites and Their

Benefits  287

	 12.3	 Defining Test Suite Minimization
Problems  287

	 12.4	 Test Suite Prioritization  288
	 12.5	 Types of Test Case Prioritization  288
	 12.6	 Prioritization Techniques  289
		 12.6.1 � Coverage-based Test Case

Prioritization  289
		 12.6.2 � Risk-based Prioritization  292
		 12.6.3 � Prioritization Based on

Operational Profiles  292
		 12.6.4 � Prioritization using Relevant

Slices  293
		 12.6.5 � Prioritization Based on

Requirements  296
		 12.6.6 � Data Flow-based Test Case

Prioritization   300
		 12.6.7 � Module Coupling Slice-based Test

Case Prioritization   301
		 12.6.8 � Program Structure Analysis-based

Test Case Prioritization   306
	 12.7	 Measuring Effectiveness of Prioritized

Test Suites  307

PART 4:  Test Automation� 313

13.  Automation and Testing Tools� 315

	 13.1	 Need for Automation  315
	 13.2	 Categorization of Testing Tools  316
		 13.2.1 � Static and Dynamic Testing

Tools  316
		 13.2.2 � Testing Activity Tools  317

	 13.3	 Selection of Testing Tools  319
	 13.4	 Costs incurred in Testing Tools  320
	 13.5	 Guidelines for Automated

Testing  321
	 13.6	 Overview of Some Commercial

Testing Tools  322

PART 5:  Testing for Specialized Environments� 325

14.  Testing Object-oriented Software� 327

	 14.1	 OOT Basics  327
		 14.1.1 � Terminology  328
		 14.1.2 � Object-oriented Modelling and

UML  329
	 14.2	 Object-oriented Testing  331
		 14.2.1 � Conventional Testing and

OOT  331
		 14.2.2 � Object-oriented Testing and

Maintenance Problems   331
		 14.2.3 � Issues in OO Testing  332

		 14.2.4 � Strategy and Tactics of Testing
OOS  333

		 14.2.5 � Verification of OOS  333
		 14.2.6 � Validation Activities  334
		 14.2.7 � Testing of OO Classes  335
		 14.2.8 � Inheritance Testing  338
		 14.2.9 � Integration Testing  342
		 14.2.10 � UML-based OO Testing  345
		 14.2.11 � Regression Testing  351

15.  Testing Web-based Systems� 356
	 15.1	 Web-based System   356

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

xxiiiContents    l

	 15.2	 Web Technology Evolution  357
		 15.2.1 � First Generation/ 2-tier Web

System  357
		 15.2.2 � Modern 3-tier and N-tier

Architecture  357
	 15.3	 Traditional Software and Web-based

Software  358
	 15.4	 Challenges in Testing for Web-based

Software  359
	 15.5	 Quality Aspects  359
	 15.6	 Web Engineering (WebE)  361
		 15.6.1 � Analysis and Design of Web-based

Systems  361
		 15.6.2 � Design Activities  363
	 15.7	 Testing of Web-Based Systems  363
		 15.7.1 � Interface Testing  364
		 15.7.2 � Usability Testing  365
		 15.7.3 � Content Testing  366
		 15.7.4 � Navigation Testing  367

		 15.7.5 � Configuration/Compatibility
Testing  368

		 15.7.6 � Security Testing  368
		 15.7.7 � Performance Testing  370

16.  Testing Agile-based Software� 375

	 16.1	 Agile Software Development  375
	 16.2	 Agile Model  376
	 16.3	 Agile Software Development Life

Cycle  377
	 16.4	 Scrum  378
	 16.5	 Agile Testing  379
		 16.5.1 � Test Driven Development  379
	 16.6	 Agile Testing Life Cycle  380
	 16.7	 Testing in Scrum Phases  382
		 16.7.1 � Regression Testing in Agile   384
	 16.8	 Challenges Related To Agile

Testing   384

PART 6:  Tracking the Bug� 389

17.  Debugging� 391

	 17.1	 Debugging—Art or Technique?  391
	 17.2	 Debugging Process  392
	 17.3	 Debugging is Difficult  392
	 17.4	 Debugging Techniques   393
		 17.4.1 � Debugging with Memory

Dump  393

		 17.4.2 � Debugging with Watch
Points  393

		 17.4.3 � Backtracking  395
	 17.5	 Correcting Bugs  395
		 17.5.1 � Debugging Guidelines  396
	 17.6	 Debuggers  396
		 17.6.1 � Types of Debuggers  397

PART 7:  Quality Management� 399

18.  Software Quality Management� 401

	 18.1	 Software Quality  402
	 18.2	 Broadening the Concept of

Quality  402
	 18.3	 Quality Cost  403
	 18.4	 Benefits of Investment on

Quality  404
	 18.5	 Quality Control and Quality

Assurance  404
	 18.6	 Quality Management

(QM)  405
	 18.7	 Quality Management and Project

Management   406
	 18.8	 Quality Factors  406

	 18.9	 Methods of Quality
Management  407

		 18.9.1 � Procedural Approach to QM  407
		 18.9.2 � Quantitative Approach to QM  410
	 18.10	 Software Quality Metrics  412
	 18.11	 SQA Models  414
		 18.11.1 � ISO 9126  414
		 18.11.2 � Capability Maturity Model

(CMM)  415
		 18.11.3 � Capability Maturity Model

Integration (CMMI)  419
		 18.11.4 � Software Total Quality

Management (STQM)  420
		 18.11.5 � Six Sigma  422

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

xxiv    Contents

19.  Testing Process Maturity Models� 425

	 19.1	 Need for Test Process Maturity  426
	 19.2	 Measurement and Improvement of

Test Process  426
	 19.3	 Test Process Maturity Models  427
		 19.3.1 � Testing Improvement Model   427

		 19.3.2 � Test Organization Model
(TOM)  428

		 19.3.3 � Test Process Improvement (TPI)
Model  428

		 19.3.4 � Test Maturity Model
(TMM)  432

Income Tax Calculator: A Case Study� 443

Appendices� 509

Appendix A  �Answers to Multiple-choice
Questions� 509

Appendix B  �Software Requirement Specification
(SRS) Verification Checklist� 511

Appendix C � High Level Design (HLD)
Verification Checklist� 514

Appendix D � Low Level design (LLD)
Verification Checklist� 516

Appendix E � General Software Design Document
(SDD) Verification Checklist� 517

Appendix F � Generic Code Verification
Checklist� 518

References  522

Index  529

About the Author  535

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

Software testing has always been considered a single phase
performed after coding. However, time has proved that
our failures in software projects are mainly due to the fact
that we have not realized the role of software testing as a
process. Thus, its role is not limited to only a single phase
in the software development life cycle (SDLC), but it starts
as soon as the requirements in a project have been gath-
ered.

Complete software testing has also been perceived for
a long time. Again, it has been proved that exhaustive
testing is not possible and we should shift our attention
to effective testing. Thus, effective and early testing con-
cepts build our testing methodology. Testing methodology
shows the path for successful testing. This is the reason
that parallel to SDLC, software testing life cycle (STLC)
has also been established now.

The testing methodology is related to many issues. All
these issues have been addressed in this part. The goals
of software testing, the mindset required to perform test-
ing, clear-cut defi nitions of testing terminology, phases of
STLC, development of testing methodology, verifi cation
and validation, etc. have been discussed in this part.
This part will lay the foundation for the following con-
cepts:

�� Effective testing, not exhaustive testing.
�� Software testing is an established process.
�� Testing should be done with the intention of fi nding

more and more bugs, not hiding them.

0101010
1010101
0101010
1010101

PART
ONE
CHAPTER 1:
Introduction to Software Testing

CHAPTER 2:
Software Testing Terminology and
Methodology

CHAPTER 3:
Verifi cation and Validation

Testing
Methodology

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

�� Difference between error, fault, and failure.
�� Bug classification.
�� Development of software testing methodology.
�� Testing life cycle models.
�� Difference between verification and validation.
�� How to perform verification and validation at vari-

ous stages of SDLC.

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

1.1 iNtroductioN

Software has pervaded our society, from modern house-
holds to spacecrafts. It has become an essential com-
ponent of any electronic device or system. This is why
software development has turned out to be an exciting
career for computer engineers in the last 10–15 years.
However, software development faces many challenges.
Software is becoming complex, but the demand for
quality in software products has increased. This rise in
customer awareness for quality increases the workload
and responsibility of the software development team.
That is why software testing has gained so much pop-
ularity in the last decade. Job trends have shifted from
development to software testing. Today, software qual-
ity assurance and software testing courses are offered by
many institutions. Organizations have separate testing groups with proper hierarchy. Software devel-
opment is driven with testing outputs. If the testing team claims the presence of bugs in the software,
then the development team cannot release the product.

There still is a gap between academia and the demand of industries. The practical demand is that
graduating students must be aware of testing terminologies, standards, and techniques. However, the
students are not aware in most cases, as our universities and colleges do not offer separate software
quality and testing courses. They study only software engineering. It can be said that software
engineering is a mature discipline today in industry as well as in academia. On the other hand, software
testing is mature in industry but not in academia. Thus, this gap must be bridged with separate courses
on software quality and testing so that students do not face problems when they go for testing in the
industry. Today, the ideas and techniques of software testing have become essential knowledge for
software developers, testers, and students as well. This book is a step forward to bridge this gap.

We cannot say that the industry is working smoothly, as far as software testing is concerned. While
many companies have adopted effective software testing techniques and the development is driven by
testing efforts, there are still some loopholes. Companies are dependent on automation of test execution.
Therefore, testers also rely on effi cient tools. However, there may be an instance where automation

Objectives
After reading this chapter, you should be able to
understand:

  How software testing has evolved over the
years

  Myths and facts of software testing
  Software testing as a separate discipline
  Testing as a complete process
  Goals of software testing
  Testing based on a negative/destructive

view
  Model for testing process
  Impossibility of complete testing
  Various schools of software testing

 Introduction to
Software Testing
 Introduction to Introduction to Introduction to Introduction to Introduction to Introduction to

CHAPTERCHAPTERCHAPTER
oneone

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

4    Software Testing: Principles and Practices

will not help, which is why they also need to design test cases and execute them manually. Are the
testers prepared for this case? This requires the testing teams to have a knowledge of testing tactics and
procedures of how to design test cases. This book discusses various techniques and demonstrates how
to design test cases.

How do organizations measure their testing process? Since software testing is a complete process
today, it must be measured to check whether the process is suitable for projects. Capability maturity
model (CMM) has measured the development process on a scale of 1–5 and companies are running for
the highest scale. On the same pattern, there should be a measurement program for testing processes.
Fortunately, the measurement technique for testing processes has also been developed; but how many
managers, developers, testers, and of course students know that we have a testing maturity model
(TMM) for measuring the maturity status of a testing process? This book gives an overview of various
test process maturity models and emphasizes the need for these.

Summarizing the above discussion, it is evident that industry and academia should go parallel.
Organizations constantly aspire for high standards. Our university courses will have no value if
their syllabi are not revised vis-à-vis industry requirements. Therefore, software testing should
be included as a separate course in our curricula. On the other side, organizations cannot run
with the development team looking after every stage, right from requirement gathering to imple-
mentation. Testing is an important segment of software development and it has to be thoroughly
done. Therefore, there should be a separate testing group with divided responsibilities among the
members.

In this chapter, we will trace the evolution of software testing. Once considered as a debugging
process, it has now evolved into a complete process. Now, we have software testing goals in place
to have a clear picture as to why we want to study testing and execute test cases. There has been
a misconception right from the evolution of software testing that it can be performed completely.
However, with time, we have grown out of this view and started focusing on effective testing rather
than exhaustive testing. The psychology of a tester plays an important role in software testing. It
matters whether one wants to show the absence of errors or their presence in the software. All these
issues, along with the models of testing, testing process, development of schools of testing, etc., will
be discussed. This chapter presents an overview of effective software testing and its related concepts.

1.2  Evolution of Software Testing

In the early days of software development, software testing was considered only a debugging
process for removing errors after the development of software. By 1970, the term ‘software
engineering’ was in common use. However, software testing was just a beginning at that time.
In 1978, G.J. Myers realized the need to discuss the techniques of software testing as a separate
subject. He wrote the book The Art of Software Testing [2], which is a classic work on software
testing. He emphasized that there is a need for undergraduate students to learn software testing
techniques so that they pass out with the basic knowledge of software testing and do not face
problems in the industry. In addition, Myers discussed the psychology of testing and emphasized
that testing should be done with a mindset of finding errors and not to demonstrate that errors
are not present.

By 1980, software professionals and organizations started emphasizing on quality. Organizations
realized the importance of having quality assurance teams to take care of all testing activities for the
project right from the beginning. In the 1990s, testing tools finally came into their own. There was a

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

5Introduction to Software Testing    l

flood of various tools, which are absolutely vital to adequate testing of software systems. However, they
do not solve all problems and cannot replace a testing process.

Gelperin and Hetzel [79] have characterized the growth of software testing with time. Based on this,
we can divide the evolution of software testing into the following phases [80] (see Fig. 1.1).

Debugging-oriented Phase (Before 1957)
This phase is the early period of testing. At that time, testing basics were unknown. Programs were
written and then tested by the programmers until they were sure that all the bugs were removed. The
term used for testing was checkout, which focused on getting the system to run. Debugging was a more
general term at that time and it was not distinguishable from software testing. Till 1956, there was no
clear distinction between software development, testing, and debugging.

Demonstration-oriented Phase (1957–78)
The term ‘debugging’ continued in this phase. However, in 1957, Charles Baker pointed out that the
purpose of checkout is not only to run the software but also to demonstrate the correctness according
to the mentioned requirements. Thus, the scope of checkout of a program increased from program
runs to program correctness. In addition, the purpose of checkout was to show the absence of errors.
There was no stress on the test case design. In this phase, there was a misconception that the software
could be tested exhaustively.

Destruction-oriented Phase (1979–82)
This phase can be described as the revolutionary turning point in the history of software testing. Myers
changed the view of testing from ‘testing is to show the absence of errors’ to ‘testing is to find more
and more errors.’ He separated debugging from testing and stressed on the valuable test cases if they

19961988198319791957

Debugging-
oriented
phase

Checkout
getting the
system to
run

Debugging

Demonstration-
oriented phase

Checkout of a
program
increased from
program runs to
program
correctness

Destruction-
oriented
phase

Separated
debugging
from testing

Testing is to
show the
absence of
errors

Effective
testing

Evaluation-
oriented
phase

Quality of the
software

Verification and
validation
techniques

Prevention-
oriented phase

Bug-prevention
rather than bug-
detection

Process-
oriented
phase

Process
rather
than a
single
phase

Figure 1.1  Evolution phases of software testing

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

6    Software Testing: Principles and Practices

explore more bugs. This phase has given importance to effective testing in comparison to exhaustive
testing. The importance of early testing was also realized in this phase.

Evaluation-oriented Phase (1983–87)
With the concept of early testing, it was realized that if the bugs were identified at an early stage
of development, it was cheaper to debug them as compared to the bugs found in implementation
or post-implementation phases. This phase stresses on the quality of software products such that it
can be evaluated at every stage of development. In fact, the early testing concept was established in
the form of verification and validation activities, which help in producing better quality software. In
1983, guidelines by the National Bureau of Standards were released to choose a set of verification and
validation techniques and evaluate the software at each step of software development.

Prevention-oriented Phase (1988–95)
The evaluation model stressed on the concept of bug prevention as compared to the earlier concept
of bug detection. With the idea of detection of bugs in earlier phases, we can prevent the bugs in
implementation or further phases. Beyond this, bugs can also be prevented in other projects with
the experience gained in similar software projects. The prevention model includes test planning, test
analysis, and test design activities playing a major role, whereas the evaluation model mainly relies on
analysis and reviewing techniques other than testing.

Process-oriented Phase (1996 onwards)
In this phase, testing was established as a complete process rather than a single phase (performed
after coding) in the software development life cycle (SDLC). The testing process starts as soon as
the requirements for a project are specified and it runs parallel to SDLC. Moreover, the model for
measuring the performance of a testing process has also been developed like CMM. This model is
known as testing maturity model (TMM). Thus, the emphasis in this phase is also on quantification of
various parameters which decide the performance of a testing process.

The evolution of software testing was also discussed by Hung Q. Nguyen and Rob Pirozzi in a white
paper [81], in three phases, namely Software Testing 1.0, Software Testing 2.0, and Software Testing
3.0. These three phases discuss the evolution in the earlier phases that we described. According to
this classification, the current state-of-practice is Software Testing 3.0. These phases are discussed
below.

Software Testing 1.0  In this phase, software testing was just considered a single phase to be performed
after coding of the software in SDLC. No test organization was there. A few testing tools were present
but their use was limited due to high cost. Management was not concerned with testing, as there was
no quality goal.

Software Testing 2.0  In this phase, software testing gained importance in SDLC and the concept of
early testing also started. Testing was evolving in the direction of planning the test resources. Many
testing tools were also available in this phase.

Software Testing 3.0  In this phase, software testing evolved in the form of a process based on strategic
effort. It means that there should be a process which gives us a roadmap of the overall testing process.
Moreover, it should be driven by quality goals so that all controlling and monitoring activities can be
performed by the managers. Thus, the management is actively involved in this phase.

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

7Introduction to Software Testing    l

1.3  Software Testing—Myths and Facts

Before getting into the details of software testing, let us discuss some myths surrounding it. These
myths are there, as this field is in its growing phase.

Myth  Testing is a single phase in SDLC .

Truth  It is a myth, at least in the academia, that software testing is just a phase in SDLC and we perform
testing only when the running code of the module is ready. However, in reality, testing starts as soon
as we get the requirement specifications for the software, and continues throughout the SDLC, even
post-implementation of the software.

Myth  Testing is easy.

Truth  This myth is more in the minds of students who have just passed out or are going to pass out
of college and want to start a career in testing. So the general perception is that software testing is an
easy job, wherein test cases are executed with testing tools only. However, in reality, tools are there
to automate the tasks and not to carry out all testing activities. A tester’s job is not easy, as it involves
planning and developing the test cases manually and requires a thorough understanding of the project
being developed with its overall design. Overall, testers have to shoulder a lot of responsibility, which
sometimes make their job even harder than that of a developer.

Myth  Software development is worth more than testing.

Truth  This myth prevails in the minds of every team member and even in freshers who are seeking
jobs. As a fresher, we dream of a job as a developer. We get into an organization as a developer and feel
superior to other team members. At the managerial level also, we feel happy about the achievements
of the developers but not of the testers who work towards the quality of the product being developed.
Thus, we have this myth right from the beginning of our career, and testing is considered a secondary
job. However, testing has now become an established path for job-seekers. Testing is a complete process
like development, so the testing team enjoys equal status and importance as the development team.

Myth  Complete testing is possible.

Truth  This myth also exists at various levels of the development team. Almost every person who has not
experienced the process of designing and executing the test cases manually feels that complete testing is
possible. Complete testing at the surface level assumes that if we are giving all the inputs to the software,
then it must be tested for all of them. However, in reality, it is not possible to provide all the possible
inputs to test the software, as the input domain of even a small program is too large to test. In addition,
there are many things which cannot be tested completely, as it may take years to do so. This will be
demonstrated soon in this chapter. This is the reason why the term ‘complete testing’ has been replaced
with ‘effective testing.’ Effective testing is to select and run some select test cases such that severe bugs
are uncovered first.

Myth  Testing starts after program development.

Truth  Most of the team members, who are not aware of testing as a process, still feel that testing cannot
commence before coding; but this is not true. As mentioned earlier, the work of a tester begins as soon
as he/she gets the specifications. The tester performs testing at the end of every phase of SDLC in the
form of verification (discussed later) and plans for the validation testing (discussed later). He/She writes

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

8    Software Testing: Principles and Practices

detailed test cases, executes the test cases, reports the test results, etc. Testing after coding is just a part
of all the testing activities.

Myth  The purpose of testing is to check the functionality of the software.

Truth  Today, all the testing activities are driven by quality goals. Ultimately, the goal of testing is also
to ensure quality of the software. However, quality does not imply checking only the functionalities of
all the modules. There are various things related to quality of the software, for which test cases must be
executed.

Myth  Anyone can be a tester.

Truth  This is the extension of the myth that ‘testing is easy.’ Most of us think that testing is an intuitive
process and it can be performed easily without any training; and therefore, anyone can be a tester. As
an established process, software testing as a career also needs training for various purposes, such as to
understand (i) various phases of software testing life cycle, (ii) recent techniques to design test cases,
(iii) various tools and how to work on them, etc. This is the reason that various testing courses for
certifying testers are being run.

After having discussed the myths, we will now identify the requirements for software testing. Owing
to the importance of software testing, let us first identify the concerns related to it. Section 1.4 discusses
the goals of software testing.

1.4  Goals of Software Testing

To understand the new concepts of software testing and to define it thoroughly, let us first discuss the
goals that we want to achieve from testing. The goals of software testing may be classified into three
major categories, as shown in Fig. 1.2.

Short-term or immediate goals  These goals are the immediate results after performing testing. These
goals may be set in the individual phases of SDLC. Some of them are discussed below.

Bug discovery  The immediate goal of testing is to find errors at any stage of software development.
More the bugs discovered at an early stage, better will be the success rate of software testing.

Figure 1.2  Software testing goals

�

�

Reduced maintenance cost
Improved testing process

Post-implementation Goals

�

�

�

�

Reliability

Risk management

Quality
Customer satisfaction

Long-term Goals

� Bug discovery

Immediate Goals

Software testing

Bug prevention�

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

9Introduction to Software Testing    l

Long-term goals  These goals affect the product quality in the long run, when one cycle of the SDLC
is complete. Some of them are discussed here.

Quality  Since software is also a product, its quality is primary from the users’ point of view. Thorough
testing ensures superior quality. Therefore, the first goal of understanding and performing the testing
process is to enhance the quality of the software product. Though quality depends on various factors, such
as correctness, integrity, efficiency, etc., reliability is the major factor to achieve quality. The software
should be passed through a rigorous reliability analysis to attain high quality standards. Reliability is a
matter of confidence that the software will not fail, and this level of confidence increases with rigorous
testing. The confidence in reliability, in turn, increases the quality, as shown in Fig. 1.3.

Customer satisfaction  From the users’ perspective, the prime concern of testing is customer satisfaction
only. If we want the customer to be satisfied with the software product, then testing should be complete
and thorough. Testing should be complete in the sense that it must satisfy the user for all the specified
requirements mentioned in the user manual, as well as for the unspecified requirements, which are
otherwise understood. A complete testing process achieves reliability, which enhances the quality, and
quality in turn increases the customer satisfaction, as shown in Fig. 1.4.

Risk management  Risk is the probability that undesirable events will occur in a system. These
undesirable events will prevent the organization from successfully implementing its business initiatives.
Thus, risk is basically concerned with the business perspective of an organization.

Risks must be controlled to manage them with ease. Software testing may act as a control, which
can help in eliminating or minimizing risks (see Fig. 1.5). Thus, managers depend on software testing to

Figure 1.3  Testing produces reliability and quality

Software testing Reliability Quality

Figure 1.4  Quality leads to customer satisfaction

Software testing Reliability Quality

Customer
satisfaction

Provides

Figure 1.5  Testing controlled by risk factors

Software testing Reliability Quality

Customer
satisfaction

ProvidesControlled by

Risk factors
� Cost
� Time
� Resources
� Critical features

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

10    Software Testing: Principles and Practices

assist them in controlling their business goals. The purpose of software testing as a control is to provide
information to management so that they can react better to risk situations [4]. For example, testing may
indicate that the software being developed cannot be delivered on time, or there is a probability that
high priority bugs will not be resolved by the specified time. With this advance information, decisions
can be made to minimize risk situation.

Hence, it is the testers’ responsibility to evaluate business risks (such as cost, time, resources, and
critical features of the system being developed) and make the same a basis for testing choices. Testers
should also categorize the levels of risks after their assessment (such as high-risk, moderate-risk, and
low-risk) and this analysis becomes the basis for testing activities. Thus, risk management becomes the
long-term goal for software testing.

Post-implementation goals  These goals are important after the product is released. Some of them
are discussed here.

Reduced maintenance cost  The maintenance cost of any software product is not its physical cost, as
the software does not wear out. The only maintenance cost in a software product is its failure due to
errors. Post-release errors are costlier to fix, as they are difficult to detect. Thus, if testing has been done
rigorously and effectively, then the chances of failure are minimized and, in turn, the maintenance cost
is reduced.

Improved software testing process  A testing process for one project may not be successful and there
may be scope for improvement. Therefore, the bug history and post-implementation results can be
analysed to find out snags in the present testing process, which can be rectified in future projects. Thus,
the long-term post-implementation goal is to improve the testing process for future projects.

Bug prevention  It is the consequent action of bug discovery. From the behaviour and interpretation
of bugs discovered, everyone in the software development team gets to learn how to code safely such
that the bugs discovered are not repeated in later stages or future projects. Though errors cannot be
prevented to zero, they can be minimized. In this sense, bug prevention is a superior goal of testing.

1.5  Psychology for Software Testing

Software testing is directly related to human psychology. Though software testing has not been properly
defined till now, it is frequently defined as,

Testing is the process of demonstrating that there are no errors.

The purpose of testing is to show that the software performs its intended functions correctly. This
definition is correct, but partially. If testing is performed keeping this goal in mind, then we cannot
achieve the desired goals (described in the previous section), as we will not be able to test the software
as a whole. Myers first identified this approach of testing the software. This approach is based on the
human psychology that human beings tend to work according to the goals fixed in their minds. If we
have a preconceived assumption that the software is error-free, then consequently, we will design the
test cases to show that all the modules run smoothly. However, it may hide some bugs. On the other
hand, if our goal is to demonstrate that a program has errors, then we will design test cases having a
higher probability to uncover bugs.

Thus, if the process of testing is reversed, such that we always presume the presence of bugs in
the software, then this psychology of being always suspicious of bugs widens the domain of testing.

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

11Introduction to Software Testing    l

It means that we not only think of testing in terms of those features or specifications that have been
mentioned in documents like software requirement specification (SRS) but also in terms of finding
bugs in the domain or features which are understood but not specified. You can argue that being
suspicious about bugs in the software is a negative approach, but this negative approach is for the
benefit of constructive and effective testing. Thus, software testing may be defined as,

Testing is the process of executing a program with the intent of finding errors.

This definition has implications on the psychology of developers. It is very common that they feel
embarrassed or guilty when someone finds errors in their software. However, we should not forget that
humans are prone to errors. We should not feel guilty for our errors. This psychology factor brings the
concept that we should concentrate on discovering and preventing the errors and not feel guilty about
them. Therefore, testing cannot be a joyous event unless you cast out your guilt.

According to this psychology of testing, a successful test is that which finds errors. This can be
understood with the analogy of medical diagnostics of a patient. If the laboratory tests do not locate
the problem, then it cannot be regarded as a successful test. On the other hand, if the laboratory test
determines the disease, then the doctor can start an appropriate treatment. Thus, in the destructive
approach of software testing, the definitions of successful and unsuccessful testing should also be
modified.

1.6  Software Testing Definitions

Many practitioners and researchers have defined software testing in their own way. Some are given
below.

Testing is the process of executing a program with the intent of finding errors.
� Myers [2]

A successful test is one that uncovers an as-yet-undiscovered error.		
� Myers [2]

Testing can show the presence of bugs but never their absence.		
� W. Dijkstra [125]

Program testing is a rapidly maturing area within software engineering that is receiving increasing notice both
by computer science theoreticians and practitioners. Its general aim is to affirm the quality of software systems by
systematically exercising the software in carefully controlled circumstances.
� E. Miller[84]

Testing is a support function that helps developers look good by finding their mistakes before anyone else does.
� James Bach [83]

Software testing is an empirical investigation conducted to provide stakeholders with information about the quality
of the product or service under test, with respect to the context in which it is intended to operate.
� Cem Kaner [85]
The underlying motivation of program testing is to affirm software quality with methods that can be economically
and effectively applied to both large-scale and small-scale systems.
� Miller [126]

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

12    Software Testing: Principles and Practices

Testing is a concurrent lifecycle process of engineering, using and maintaining testware (i.e., testing artifacts) in
order to measure and improve the quality of the software being tested.
� Craig [117]

Since quality is the prime goal of testing and it is necessary to meet the defined quality standards,
software testing should be defined keeping in view the quality assurance terms. Here, it should not be
misunderstood that the testing team is responsible for quality assurance. However, the testing team
must be well aware of the quality goals of the software so that they work towards achieving them.

Testers these days are aware of the definition that testing is to find more and more bugs, but the
problem is that there are too many bugs to fix. Therefore, the recent emphasis is on categorizing the
more important bugs first. Thus, software testing can be defined as,

Software testing is a process that detects important bugs with the objective of having better quality software.

1.7  Model for Software Testing

Testing is not an intuitive activity, rather it should be learnt as a process. Therefore, testing should
be performed in a planned way. For the planned execution of a testing process, we need to consider
every element and every aspect related to software testing. Thus, in the testing model, we consider the
related elements and team members involved (see Fig. 1.6).

The software is basically a part of a system for which it is being developed. Systems consist of
hardware and software to make the product run. The developer develops the software in the prescribed
system environment considering the testability of the software. Testability is a major issue for the
developer while developing the software, as a badly written software may be difficult to test. Testers
are supposed to get on with their tasks as soon as the requirements are specified. Testers work on
the basis of a bug model which classifies the bugs based on the criticality or the SDLC phase in
which the testing is to be performed. Based on the software type and the bug model, testers decide a
testing methodology, which guides how the testing will be performed. With suitable testing techniques
decided in the testing methodology, testing is performed on the software with a particular goal. If the
testing results are in line with the desired goals, then the testing is successful; otherwise, the software or
the bug model or the testing methodology has to be modified so that the desired results are achieved.
The following describe the testing model.

Figure 1.6  Software testing model

Testing
methodology

Testing

Bug model

Tester

Software

Results

System

Developer

Expected
results

Nature of bugs and
psychology of testing

Unexpected
results

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

13Introduction to Software Testing    l

Software and Software Model
Software is built after analysing the system in the environment. It is a complex entity which deals with
environment, logic, programmer psychology, etc. However, a complex software makes it very difficult
to test. Since in this model of testing, our aim is to concentrate on the testing process, the software
under consideration should not be so complex such that it cannot be tested. In fact, this is the point of
consideration for developers who design the software. They should design and code the software such
that it is testable at every point, thus avoiding unnecessary complexities.

Bug Model
Bug model provides a perception of the kind of bugs expected. Considering the nature of all types
of bugs, a bug model that may help in deciding a testing strategy can be prepared. However, every
type of bug cannot be predicted. Therefore, if we get incorrect results, the bug model needs to be
modified.

Testing Methodology and Testing
Based on the inputs from the software model and the bug model, testers can develop a testing methodology
that incorporates both testing strategy and testing tactics. Testing strategy is the roadmap that gives us well-
defined steps for the overall testing process. It prepares the planned steps based on the risk factors and the
testing phase. Once the planned steps of the testing process are prepared, software testing techniques and
testing tools can be applied within these steps. Thus, testing is performed on this methodology. However, if
we don’t get the required results, the testing plans must be checked and modified accordingly.

All the components described until now will be discussed in detail in subsequent chapters.

1.8  Effective Software Testing vs Exhaustive Software Testing

Exhaustive or complete software testing means that every statement in the program and every possible path
combination with every possible combination of data must be executed. However, soon, we will realize
that exhaustive testing is out of scope. That is why the questions arise: (i) When are we done with testing?
or (ii) How do we know that we have tested enough? There may be many answers for these questions with
respect to time, cost, customer, quality, etc. This section will explore why exhaustive or complete testing
is not possible. We should concentrate on effective testing that emphasizes efficient techniques to test the
software so that important features will be tested within the constrained resources.

The testing process should be understood as a domain of possible tests (see Fig. 1.7). There are
subsets of these possible tests. However, the domain of possible tests becomes infinite, as we cannot
test every possible combination.

Figure 1.7  Testing domain

Domain of
testing

Subsets of
testing

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

14    Software Testing: Principles and Practices

This combination of possible tests is infinite, that is, the processing resources and time are not
sufficient for performing these tests. Computer speed and time constraints limit the possibility of
performing all the tests. Complete testing requires the organization to invest a long time, which is not
cost-effective. Therefore, testing must be performed on selected subsets that can be performed within
the constrained resources. This selected group of subsets (not the whole domain of testing) makes
software testing effective. Effective testing can be enhanced if subsets are selected based on the factors
that are required in a particular environment.

Now, let us see in detail why complete testing is not possible.

Domain of Possible Inputs to the Software is too Large to Test
Even if we consider the input data as the only part of the domain of testing, we are not able to test the
complete input data combination. The domain of input data has four sub-parts: (a) valid inputs, (b)
invalid inputs, (c) edited inputs, and (d) race condition inputs (See Fig. 1.8)

Valid inputs  It seems that we can test every valid input on the software. Let us look at a very simple
example of adding two-digit two numbers. Their range is from –99 to 99 (total 199). So the total number
of test case combinations will be 199 × 199 = 39601. Further, if we increase the range from two digits
to four-digits, then the number of test cases will be 399,960,001. Most addition programs accept 8 or 10
digit numbers or more. How can we test all these combinations of valid inputs? When we test a software
with valid data, it is known as positive testing. Positive testing is always performed keeping in view the
valid range or limits of the test data in test cases.

Invalid inputs  Testing the software with valid inputs is only one part of the input sub-domain. There
is another part, invalid inputs, which must be tested for testing the software effectively. When we test a
software with invalid data, it is known as negative testing. Negative testing is always performed keeping in
view that the software must work properly when it is passed through invalid set of data. Thus, negative
testing basically tries to break the software. The important thing in this case is the behaviour of the

Figure 1.8  Input domain for testing

Domain of
testing

Input
domain

Race condition
inputs

Valid inputs

Edited
inputs

Invalid
inputs

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

15Introduction to Software Testing    l

program as to how it responds when a user feeds invalid inputs. A set of invalid inputs is also too large
to test. If we consider again the example of adding two numbers, then the following possibilities may
occur:

	 (i)	 Numbers out of range
	(ii)	 Combination of alphabets and digits
	(iii)	 Combination of all alphabets
	(iv)	 Combination of control characters
	(v)	 Combination of any other key on the keyboard

Table 1.1 summarizes the differences between positive and negative testing.

Table 1.1  Comparison between positive and negative testing

Positive Testing Negative Testing

Positive testing means testing software project by providing valid
data.

Negative testing means testing the software project by providing
invalid data

Only suitable set of values are tested by testers. Invalid set of values are tested by testers

It is done by keeping positive point of view, i.e., checking a mobile
number by giving numbers only like 9999999999.

It is done by keeping a negative point of view, i.e., checking a
mobile number by giving numbers and letters like 99999xyzef

The aim of positive testing is to find out whether the software
project is working as per the required specifications

The aim of negative testing is to try break the application by giv-
ing an invalid set of data

Only known test conditions are verified in this testing This testing is performed to break an application with an unknown
set of test conditions

Positive testing is also called valid testing Negative testing is also called invalid testing

Edited inputs  If we can edit inputs at the time of providing them to the program, then many un-
expected input events may occur. For example, you can add many spaces in the input, which are
not visible to the user. It can be a reason for non-functioning of the program. In another example, it
may be possible that a user is pressing a number key, then Backspace key continuously and finally
after sometime, presses another number key and Enter. Its input buffer overflows and the system
crashes.

The behaviour of users cannot be judged. They can behave in a number of ways, causing defect in
testing a program. That is why edited inputs are also not tested completely.

Race condition inputs  The timing variation between two or more inputs is also one of the issues that
limit the testing. For example, there are two input events, A and B. According to the design, A precedes
B in most of the cases. However, B can also come first in rare and restricted conditions. There is the race
condition, whenever B precedes A. Usually the program fails due to race conditions, as the possibility
of preceding B in restricted condition has not been taken care, resulting in a race condition bug. In this
way, there may be many race conditions in the system, especially in multiprocessing and interactive
systems. Race conditions are among the least tested.

There are too Many Possible Paths Through the Program to Test
A program path can be traced through the code from the start of a program to its termination. Two
paths differ if the program executes different statements in each, or executes the same statements but

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

16    Software Testing: Principles and Practices

in different order. A testing person may think that if all the possible paths of control flow through the
program are executed, then possibly the program can be said to be completely tested. However, there
are two flaws in this statement.

	 (i)	 The number of unique logic paths through a program is too large. This was demonstrated by
Myers[2] with an example shown in Fig. 1.9. It depicts a 10–20 statements program consisting
of a DO loop that iterates up to 20 times. Within the body of the DO loop is a set of nested IF
statements. The number of all the paths from point A to B is approximately 1014. Thus, all these
paths cannot be tested, as it may take years to complete.

		 Another example for the code fragment is shown in Fig. 1.10 and its corresponding flow graph
is shown in Fig. 1.11 (We will learn how to convert the program into a flow graph in Chapter 5).

Figure 1.9  Sample flow graph 1

1. for (int i = 0; i < n; ++i)
2. {
3. if (m >=0)
4. 	 x[i] = x[i] + 10;
5. else
6. 	 x[i] = x[i] − 2;
7. }

Figure 1.10  Sample code fragment

2, 3

1

7

4 5, 6

Figure 1.11  Example flow graph 2

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

17Introduction to Software Testing    l

		 Now calculate the number of paths in this fragment. For calculating the number of paths, we
must know how many paths are possible in one iteration. Here in our example, there are two
paths in one iteration. The total number of paths will be 2n + 1, where n is the number of times
the loop will be carried out, and 1 is added, as the for loop will exit after its looping ends and
terminate. Thus, if n is 20, then the number of paths will be 220 + 1, that is, 1048577. Therefore,
all these paths cannot be tested, as it may take years.

	(ii)	 The complete path testing, if performed somehow, does not guarantee that there will not be
errors. For example, it does not claim that a program matches its specification. If one were
asked to write an ascending order sorting program, but the developer mistakenly produces a
descending order program, then exhaustive path testing will be of little value. In another case, a
program may be incorrect because of missing paths. In this case, exhaustive path testing would
not detect the missing path.

Every Design Error Cannot be Found
Manna and Waldinger [15] have mentioned the following fact: ‘We can never be sure that the
specifications are correct.’ How do we know that the specifications are achievable? Its consistency and
completeness must be proved, and in general, that is a provably unsolvable problem [9]. Therefore,
specification errors are one of the major reasons that make the design of the software faulty. If the user
requirement is to have measurement units in inches and the specification says that these are in meters,
then the design will also be in meters. Secondly, many user interface failures are also design errors.

The study of these limitations of testing shows that the domain of testing is infinite and testing the
whole domain is just impractical. When we leave a single test case, the concept of complete testing
is abandoned, but it does not mean that we should not focus on testing. Rather, we should shift our
attention from exhaustive testing to effective testing. Effective testing provides the flexibility to select
only the subsets of the domain of testing based on project priority such that the chances of failure in a
particular environment are minimized.

1.9 E ffective Testing is hard

We have seen the limitations of exhaustive software testing, which makes it nearly impossible to
achieve. Effective testing, though not impossible, is hard to implement. However, if there is careful
planning, keeping in view all the factors which can affect it, it is implementable as well as effective.
To achieve that planning, we must understand the factors which make effective testing difficult. At the
same time, these factors must be resolved. These are described as follows.

Defects are hard to find  The major factor in implementing effective software testing is that a lot
of defects go undetected due to many reasons; for example, certain test conditions are never tested.
Secondly, developers become so familiar with their developed system that they overlook details and
leave some parts untested. So a proper planning for testing all the conditions should be done and
independent testing, other than that done by developers, should be encouraged.

When are we done with testing  This factor actually searches for the definition of effective software
testing. Since exhaustive testing is not possible, we don’t know what should be the criteria to stop the
testing process. A software engineer needs more rigorous criteria for determining when sufficient testing
has been performed. Moreover, effective testing has the limiting factor of cost, time, and personnel. In a

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

18    Software Testing: Principles and Practices

nutshell, the criteria should be developed for enough testing. For example, features can be prioritized,
which must be tested within the boundary of cost, time, and personnel of the project.

1.10  Software Testing as Process

Since software development is an engineering activity for a quality product, it consists of many processes.
As it was seen in testing goals, software quality is the major driving force behind testing. Software testing has
also emerged as a complete process in software engineering (see Fig. 1.12). Therefore, our major concern
in this text is to show that testing is not just a phase in SDLC normally performed after coding, rather soft-
ware testing is a process, which runs parallel to SDLC. In Fig. 1.13, you can see that software testing starts
as soon as the requirements are specified. Once the SRS document is prepared, testing process starts. Some
examples of test processes, such as test plan and test design are given. All the phases of testing life cycle will
be discussed in detail in the next chapter.

Software testing process must be planned, specified, designed, implemented, and quantified. Testing
must be governed by the quality attributes of the software product. Thus, testing is a dual-purpose process,
as it is used to detect bugs as well as to establish confidence in the quality of software.

An organization, to ensure better quality software, must adopt a testing process and consider the
following points:

	 	 Testing process should be organized such that there is enough time for important and critical
features of the software

	 	 Testing techniques should be adopted such that these techniques detect maximum bugs
	 	 Quality factors should be quantified so that there is a clear understanding in running the testing

process. In other words, the process should be driven by quantified quality goals. In this way,
the process can be monitored and measured

	 	 Testing procedures and steps must be defined and documented
	 	 There must be scope for continuous process improvement

All the issues related to testing process will be discussed in succeeding chapters.

Figure 1.12  Testing process emerged out of development
process

Software development
process

Software
testing

Figure 1.13  Testing process runs parallel to software process

Software development process
Requirements gathering
Requirement specification

Design
code
........

Software testing

Test plan
Test case design
Test execution

.......

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

19Introduction to Software Testing    l

1.11  Schools of Software Testing

Software testing has also been classified into some views according to some practitioners. They call
these views or ideas as schools of testing. The idea of schools of testing was given by Bret Pettichord [82].
He has proposed the following schools:

Analytical School of Testing
In this school of testing, software is considered as a logical artifact. Therefore, software testing
techniques must have a logico-mathematical form. This school requires that there must be precise and
detailed specifications for testing the software. In addition, it provides an objective measure of testing.
After this, testers should be able to verify whether the software conforms to its specifications. Structural
testing is one example for this school of testing. Thus, the emphasis is on testing techniques that should
be adopted.

This school defines software testing as a branch of computer science and mathematics.

Standard School of Testing
The core beliefs of this school of testing are:

	 1.	 Testing must be managed (for example, through traceability matrix. It will be discussed in detail
in succeeding chapters). It means the testing process should be predictable, repeatable, and
planned.

	 2.	 Testing must be cost-effective
	 3.	 Low-skilled workers require direction
	 4.	 Testing validates the product
	 5.	 Testing measures development progress

Thus, the emphasis is on measurement of testing activities to track the development progress.

This school defines software testing as a managed process.

The implications of this school are:

	 1.	 There must be clear boundaries between testing and other activities
	 2.	 Plans should not be changed as it complicates progress tracking
	 3.	 Software testing is a complete process
	 4.	 There must be some test standards, best practices, and certification

Quality School of Testing
The core beliefs of this school of testing are:

	 1.	 Software quality requires discipline
	 2.	 Testing determines whether development processes are being followed
	 3.	 Testers may need to monitor developers to follow the rules
	 4.	 Testers have to protect the users from bad software

Thus, the emphasis is to follow a good process.

This school defines software testing as a branch of software quality assurance.

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

20    Software Testing: Principles and Practices

The implications of this school are:

	 1.	 It prefers the term ‘quality assurance’ over ‘testing’
	 2.	 Testing is a stepping stone to ‘process improvement’

Context-driven School of Testing
This school is based on the concept that testing should be performed according to the context of the
environment and project. Testing solutions cannot be the same for every context. For example, if there
is a high-cost real-time defense project, then its testing plans must be different as compared to any
daily-life low-cost project. Test plan issues will be different for both projects. Therefore, testing activities
should be planned, designed, and executed keeping in view the context of environment in which testing
is to be performed. The emphasis is to select a testing type that is valuable. Thus, context-driven testing
can be defined as the testing driven by environment, type of project, and the intended use of software.

The implications of this school are:

	 1.	 Expect changes; adapt testing plans based on test results
	 2.	 Effectiveness of test strategies can only be determined with field research
	 3.	 Testing research requires empirical and psychological study
	 4.	 Focus on skill over practice

Agile School of Testing
This type of school is based on testing the software that is developed by iterative method of development
and delivery. In this type of process model, the software is delivered in a short span of time; and based
on the feedback, more features and capabilities are added. The focus is on satisfying the customer by
delivering a working software quickly with minimum features and then improvising on it based on
the feedback. The customer is closely related to the design and development of the software. Since
the delivery timelines are short and new versions are built by modifying the previous one, chances of
introducing bugs are high during the changes done to one version. Thus, regression testing becomes
important for this software. Moreover, test automation also assumes importance to ensure the coverage
of testing in a short span of time.

It can be seen that agile software development faces various challenges. This school emphasizes on
all the issues related to agile testing.

1.12  Software Failure Case Studies

At the end of this chapter, let us discuss a few case studies that highlight the failures of some expensive
and critical software projects. These case studies show the importance of software testing. Many big
projects have failed in the past due to lack of proper software testing. In some instances, the product
was replaced without question. The concerned parties had to bear huge losses in every case. It goes on
to establish the fact that the project cost increases manifold if a product is launched without proper tests
being performed on it. These case studies emphasize the importance of planning the tests, designing,
and executing the test cases in a highly prioritized way, which is the central theme of this book.

Air Traffic Control System Failure (September 2004)
In September 2004, air traffic controllers in the Los Angeles area lost voice contact with 800 planes
allowing 10 to fly too close together, after a radio system shut down. The planes were supposed to be

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

21Introduction to Software Testing    l

separated by five nautical miles laterally, or 2,000 feet in altitude. However, the system shut down
when 800 planes were in the air, and forced delays for 400 flights and the cancellations of 600 more.
The system had voice switching and control system, which gives controllers a touch-screen to connect
with planes in flight and with controllers across the room or in distant cities.

The reason for failure was partly due to a ‘design anomaly’ in the way Microsoft Windows servers
were integrated into the system. The servers were timed to shut down after 49.7 days of use in order
to prevent a data overload. To avoid this automatic shutdown, technicians are required to restart the
system manually every 30 days. An improperly trained employee failed to reset the system, leading it
to shut down without warning.

Welfare Management System Failure (July 2004)
It was a new government system in Canada costing several hundred million dollars. It failed due to the
inability to handle a simple benefit rate increase after being put into live operation. The system was
not given adequate time for system and acceptance testing and never tested for its ability to handle a
rate increase.

Northeast Blackout (August 2003)
It was the worst power system failure in North American history. The failure involved loss of electrical
power to 50 million customers, forced shutdown of 100 power plants and economic losses estimated
at $6 billion. The bug was reportedly in one utility company’s vendor-supplied power monitoring
and management system. The failures occurred when multiple systems trying to access the same
information at once got the equivalent of busy signals. The software should have given one system
precedent. The error was found and corrected after examining millions of lines of code.

Tax System Failure (March 2002)
This system was Britain’s national tax system, which failed in 2002 and resulted in more than 1,00,000
erroneous tax overcharges. It was suggested in the error report that the integration testing of multiple
parts could not be done.

Mars Polar Lander Failure (December 1999)
NASA’s Mars Polar Lander was to explore a unique region of the red planet; the main focus was on
climate and water. The spacecraft was outfitted with a robot arm, which was capable of digging into
Mars in search of near-surface ice. It was supposed to gently set itself down near the border of Mars’
southern polar cap. However, it couldn’t touch the surface of Mars. The communication was lost when
it was 1800 meters away from the surface of Mars.

When the Lander’s legs started opening for landing on Martian surface, there were vibrations which
were identified by the software. This resulted in the vehicle’s descent engines being cut off while it was
still 40 meters above the surface, rather than on touchdown as planned. The software design failed to
take into account that a touchdown signal could be detected before the Lander actually touched down.
The error was in design. It should have been configured to disregard touchdown signals during the
deployment of the Lander’s legs.

Mars Climate Orbiter Failure (September 1999)
Mars Climate Orbiter was one of a series of missions in a long-term program of Mars exploration managed
by the Jet Propulsion Laboratory for NASA’s Office of Space Science, Washington, D.C. Mars Climate

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

22    Software Testing: Principles and Practices

Orbiter was to serve as a communications relay for the Mars Polar Lander mission. However, it disappeared
as it began to orbit Mars. Its cost was about $125 million. The failure was due to an error in transfer of
information between a team in Colorado and a team in California. This information was critical to the
maneuvers required to place the spacecraft in the proper Mars orbit. One team used English units (e.g.,
inches, feet, and pounds), whereas the other team used metric units for a key spacecraft operation.

Stock Trading Service Failure (February 1999)
This was an online US stock trading service, which failed during trading hours several times over a
period of days in February 1999. The problem found was due to bugs in a software upgrade intended
to speed online trade confirmations.

Intel Pentium Bug (April 1997)
Intel Pentium was also observed with a bug that is known as Dan-0411 or Flag Erratum. The bug is
related to the operation where conversion of floating point numbers is done into integer numbers. All
floating-point numbers are stored inside the microprocessor in an 80-bit format. Integer numbers are
stored externally in two different sizes, that is, 16 bits for short integers and 32 bits for long integers. It
is often desirable to store the floating-point numbers as integer numbers. When the converted numbers
do not fit the integer size range, a specific error flag is supposed to be set in a floating point status
register. However, the Pentium II and Pentium Pro failed to set this error flag in many cases.

The Explosion of Ariane 5 (June 1996)
Ariane 5 was a rocket launched by the European Space Agency. On 4 June 1996, it exploded at
an altitude of about 3700 meters just 40 seconds after its lift-off from Kourou, French Guiana. The
launcher turned off its flight path, broke up and exploded. The rocket took a decade of development
time with a cost of $7 billion. The destroyed rocket and its cargo were valued at $500 million. The
failure of Ariane was caused due to the complete loss of guidance and altitude information, 37 seconds
after the start of main engine ignition sequence (30 seconds after lift-off).

A board of inquiry investigated the causes of the explosion and in two weeks issued a report. It was
found that the cause of the failure was a software error in the inertial reference system (SRI). The internal
SRI software exception was caused during the execution of a data conversion from 64-bit floating point
to 16-bit signed integer value. A 64-bit floating point number relating to the horizontal velocity of the
rocket with respect to the platform was converted to a 16-bit signed integer. The number was larger than
32,767, the largest integer stored in a 16-bit signed integer; and thus the conversion failed. The error was
due to specification and design errors in the software of the inertial reference system.

Summary

This chapter emphasizes that software testing has emerged as a separate discipline. Software testing is now
an established process. It is driven largely by the quality goals of the software. Thus, testing is the critical
element of software quality. This chapter shows that testing cannot be performed with an optimistic view that
the software does not contain errors. Rather, testing should be performed keeping in mind that the software
always contains errors.

A misconception has prevailed through the evolution of software testing that complete testing is possible,
but it is not true. Here, it has been demonstrated that complete testing is not possible. Thus, the term ‘effective

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

23Introduction to Software Testing    l

software testing’ is becoming more popular as compared to ‘exhaustive’ or ‘complete’ testing. The chapter gives
an overview of software testing discipline along with definitions of testing, models for testing, and different
schools of testing. To realize the importance of effective software testing as a separate discipline, some case
studies showing the software failures in systems have also been discussed.

Let us quickly review the important concepts described in this chapter.

•• Software testing has evolved through many phases, namely (i) debugging-oriented phase, (ii) demon-
stration-oriented phase, (iii) destruction-oriented phase, (iv) evaluation-oriented phase, (v) preven-
tion-oriented phase, and (vi) process-oriented phase.

•• There is another classification for evolution of software testing, namely Software testing 1.0, Software
testing 2.0, and Software testing 3.0.

•• Software testing goals can be partitioned into following categories:
	 1.	 Immediate goals
		 	 Bug discovery
	 2.	 Long-term goals
		 	 Reliability
		 	 Quality
		 	 Customer satisfaction
		 	 Risk management
	 3.	 Post-implementation goals
		 	 Reduced maintenance cost
		 	 Improved testing process
		 	 Bug prevention

•• Testing should be performed with a mindset of finding bugs. This suspicious strategy (destructive ap-
proach) helps in finding more and more bugs.

•• Software testing is a process that detects important bugs with the objective of having better quality
software.

•• Exhaustive testing is not possible due to the following reasons:
	 	 It is not possible to test every possible input, as the input domain is too large.
	 	 There are too many possible paths through the program to test.
	 	 It is difficult to locate every design error.

•• Effective software testing, instead of complete or exhaustive testing, is adopted such that critical test
cases are covered first.

•• There are different views on how to perform testing, which have been categorized as schools of soft-
ware testing, namely (i) analytical school, (ii) standard school, (iii) quality school, (iv) context school,
and (v) agile school.

•• Software testing is a complete process like software development.

Exercises

Multiple-choice Questions

	 1.1	� Bug discovery is a goal of
software testing.

		 (a)	Long-term

		 (b)	Short-term

		 (c)	Post-implementation

		 (d)	All of these

	 1.2	� Customer satisfaction and risk management
are goals of software testing.

		 (a)	Long-term

		 (b)	Short-term

		 (c)	Post-implementation

		 (d)	All of these

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

24    Software Testing: Principles and Practices

	 1.3	� Reduced maintenance is a goal
of software testing.

		 (a)	Long-term

		 (b)	Short-term

		 (c)	Post-implementation

		 (d)	All of these

	 1.4	 Software testing produces .

		 (a)	Reliability

		 (b)	Quality

		 (c)	Customer satisfaction

		 (d)	All of these

	 1.5	 Testing is the process of errors.

		 (a)	Hiding

		 (b)	Finding

		 (c)	Removing

		 (d)	None of these

	 1.6	 Complete testing is .

		 (a)	Possible

		 (b)	Impossible

		 (c)	None of these

	 1.7	� The domain of possible inputs to the soft-
ware is too to test.

		 (a)	Large

		 (b)	Short

		 (c)	None of these

	 1.8	� The set of invalid inputs is too to
test.

		 (a)	Large

		 (b)	Short

		 (c)	None of these

	 1.9	� Race conditions are among the
tested.

		 (a)	Most

		 (b)	Least

		 (c)	None of these

	 1.10	 Every design error be found.

		 (a)	Can

		 (b)	Can definitely

		 (c)	Cannot

		 (d)	None of these

	 1.1	� How does testing help in producing quality
software?

	 1.2	� ‘Testing is the process of executing a pro-
gram with the intent of finding errors.’ Com-
ment on this statement.

	 1.3	� Differentiate between effective and exhaus-
tive software testing.

	 1.4	� Find out some myths related to software test-
ing, other than those described in this chapter.

	 1.5	� ‘Every design error cannot be found.’ Discuss
this problem in reference to some project.

	 1.6	� ‘The domain of possible inputs to the soft-
ware is too large to test.’ Demonstrate using
some example programs.

	 1.7	� ‘There are too many possible paths through
the program to test.’ Demonstrate using
some example programs.

	 1.8	� What are the factors for determining the limit
of testing?

	 1.9	� Explore some more software failure case
studies other than those discussed in this
chapter.

Review Questions

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

