
Assistant Professor
Department of Computer Science

Shyama Prasad Mukherji College for Women
University of Delhi

Reema Thareja

Computer
Programming
As per JNTU Kakinada R16 syllabus

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

3
Oxford University Press is a department of the University of Oxford.

It furthers the University’s objective of excellence in research, scholarship,
and education by publishing worldwide. Oxford is a registered trade mark of

Oxford University Press in the UK and in certain other countries.

Published in India by
Oxford University Press

YMCA Library Building, 1 Jai Singh Road, New Delhi 110001, India

© Oxford University Press 2016

The moral rights of the author/s have been asserted.

First published in 2016

All rights reserved. No part of this publication may be reproduced, stored in
a retrieval system, or transmitted, in any form or by any means, without the

prior permission in writing of Oxford University Press, or as expressly permitted
by law, by licence, or under terms agreed with the appropriate reprographics

rights organization. Enquiries concerning reproduction outside the scope of the
above should be sent to the Rights Department, Oxford University Press, at the

address above.

You must not circulate this work in any other form
and you must impose this same condition on any acquirer.

ISBN-13: 978-0-19-947415-8
ISBN-10: 0-19-947415-X

Typeset in Times New Roman
by Pee-Gee Graphics, New Delhi

Printed in India by Magic International (P) Ltd, Greater Noida

Third-party website addresses mentioned in this book are provided
by Oxford University Press in good faith and for information only.

Oxford University Press disclaims any responsibility for the material contained therein.

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

I dedicate this book to my family and my uncle Mr B.L. Theraja,
who is a well-known author

3
Oxford University Press is a department of the University of Oxford.

It furthers the University’s objective of excellence in research, scholarship,
and education by publishing worldwide. Oxford is a registered trade mark of

Oxford University Press in the UK and in certain other countries.

Published in India by
Oxford University Press

YMCA Library Building, 1 Jai Singh Road, New Delhi 110001, India

© Oxford University Press 2016

The moral rights of the author/s have been asserted.

First published in 2016

All rights reserved. No part of this publication may be reproduced, stored in
a retrieval system, or transmitted, in any form or by any means, without the

prior permission in writing of Oxford University Press, or as expressly permitted
by law, by licence, or under terms agreed with the appropriate reprographics

rights organization. Enquiries concerning reproduction outside the scope of the
above should be sent to the Rights Department, Oxford University Press, at the

address above.

You must not circulate this work in any other form
and you must impose this same condition on any acquirer.

ISBN-13: 978-0-19-947415-8
ISBN-10: 0-19-947415-X

Typeset in Times New Roman
by Pee-Gee Graphics, New Delhi

Printed in India by Magic International (P) Ltd, Greater Noida

Third-party website addresses mentioned in this book are provided
by Oxford University Press in good faith and for information only.

Oxford University Press disclaims any responsibility for the material contained therein.

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

Preface

Computers are so widely used in our day-to-day lives
that imagining a life without them has become almost
impossible. They are not only used by professionals but
also by children for interactively learning lessons, playing
games, and doing their homework. Applications of the
computer and its users are increasing by the day.
	 Learning computer fundamentals is a stepping stone to
having an insight into how these machines work. Once the
reader is aware of the basic terminology that is commonly
used in computer science, he/she can then go on to develop
useful computer programs that may help solve a user’s
problems.
	 Since computers cannot understand human languages,
special programming languages are designed for this
purpose. C is one such programming language. Being
the most popular and successful programming language,
it is used in several different software platforms such as
system software and application software.
	 Many of the popular cross-platform programming
languages, such as C++, Java, Python, Objective-C, Perl,
and Ruby, and scripting languages, such as PHP, Lua, and
Bash, borrow syntaxes, and functions from C.
	 Hence, mastering the C language is a prerequisite for
learning such languages.

About the book
This book is designed as a textbook to meet the
requirements of the latest syllabus of the first year
computer programming course offered by the Jawaharlal
Nehru Technological University (JNTU), Kakinada.
The objective of this book is to introduce the students
to the fundamentals of computers and the concepts of C
programming language, and enable them to apply these
concepts for solving real-world problems.
	 The book provides comprehensive coverage of all the
relevant topics using simple language. It also contains

useful annexures to various chapters including writing
compiling and executing programs in Unix/ Ubuntu/
Linux, user-defined header files, and pointer declarations
for additional information. Case studies, ASCII chart,
important library functions, preprocessors, inline
functions and bit-level programming are also provided to
supplement the text.
	 Programming skill is best developed by rigorous
practice. Keeping this in mind, the book provides a number
of programming examples that would help the reader learn
how to write efficient programs. To further enhance the
understanding of the subject, there are numerous chapter-
end exercises provided in the form of objective type
questions, review questions, and programming problems.

Organization of the book

The book is organized into 9 chapters, 3 annexures, 2 case
studies, and 5 appendices.

Chapter 1 provides an introduction to computer hardware
and software. It introduces the concept of memory and its
storage units such as bits and bytes. The chapter provides
an insight into different programming languages and the
generation through which these languages have evolved.
Topics such as application software, system software,
algorithms, flowcharts and the software development
process are also presented in this chapter.

Chapter 2 covers the building blocks of the C programming
language. The chapter discusses about data types,
identifiers, constants, variables, and operators supported
by the language. The chapter also discusses expressions,
type conversion and casting, basic library functions, and
I/O modifiers.

Annexure 1 demonstrates the steps to write, compile,
and execute a C program in Unix, Linux, and Ubuntu
environments.

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

vi

Chapter 3 explains important types of statements such
as decision statements, iterative statements, control
statement, break statement, and jump statement.

Case Study 1 includes two programs which harness the
concepts learnt in Chapters 2 and 3.

Chapter 4 deals with declaring, defining and calling
functions. The chapter also discusses the storage classes
as well as variable scope in C. It ends with an important
concept of recursive functions and a discussion on Tower
of Hanoi problem.

Annexure 2 discusses how to create user-defined header
files.

Chapter 5 provides a detailed explanation of arrays that
includes one-dimensional, two- dimensional and multi-
dimensional arrays. Finally, the operations that can be
performed on such arrays are also explained.

Chapter 6 unleashes the concept of strings, also known as
character arrays. The chapter not only focuses on reading
and writing strings but also explains various operations
that can be used to manipulate the character arrays.

Chapter 7 introduces the concept of pointers including
pointer variables, pointer arithmetic, null and generic
pointers. The chapter relates the use of pointers with
arrays, strings, and functions. It also includes drawbacks
of pointers and dynamic memory allocation in C.

Annexure 3 explains the process of deciphering pointer
declarations. Case Study 2 includes a program which
shows how pointers can be used to access and manipulate
strings.
Chapter 8 introduces two derived or user-defined data
types—structure and union. The chapter includes the use
of structures and unions with pointers, arrays and functions
so that the inter-connectivity between the programming

Preface

Key Features of the Book
and their Benefits

Features Benefits

Topical coverage: Topics are arranged as per the latest R16
syllabus of JNTU Kakinada.

Completely fulfils the syllabus requirements.

Presentation: Simple and lucid presentation of concepts
supported with numerous illustrations.

This makes the text easier to comprehend for the readers.

Programming Examples: Plenty of programming examples
along with their output and descriptions are provided in
support of text.

These features will help readers understand the concept,
logic, and syntaxes used while developing a program,
thereby transforming them into efficient programmers.

Notes and Programming Tips: Every chapter includes
‘notes’ mentioning the important concepts to remember
and ‘programming tips’ stating the do’s and don’ts while
developing a program.

This will help readers keep the critical things in mind and
develop error-free programs.

Points to Remember and Glossary: A summary of
important concepts and key terms with definitions are
given at the end of each chapter.

This will help readers in quick recapitulation of the
concepts discussed in that particular chapter.

Chapter-end Practice Questions: Chapter-end exercises
include objective-type questions (fill in the blanks, true/
false and multiple choice questions), review questions,
programming exercises, and find the output and error
questions. Answers to the objective-type questions are
given in Appendix E.

These are provided to test readers’ knowledge of the
concepts, improve their programming skills as also help
them apply and assimilate the concepts learnt.

Model Question Papers: 3 solved and 2 unsolved model
papers are provided

This will help students prepare for their university
examinations.

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

viiPreface

techniques can be well understood. Typedef, enumerated
data type, and bit fields are also covered in this chapter.
Chapter 9 discusses how data can be stored in files. The
chapter discusses the opening, processing, and closing of
files using a C program. These files are handled in text
mode as well as binary mode for better clarity of the
concepts.
	 The book also provides 5 appendices, namely,
Appendix A: ASCII Codes of Characters, Appendix B:
ANSI C Library Functions, Appendix C: Preprocessors
and Inline Functions, Appendix D: Bit-level Programming
and Bitwise Shift operators, and Appendix E: Answers to
Objective-type Questions.

ONLINE RESOURCES

For the benefit of faculty and students reading this book,
additional resources are available online at india.oup.com/
orcs/ 9780199474158.

For Faculty

	 ∑	 Solutions Manual
	 ∑	 Chapter-wise PPTs

For Students

	 ∑	 Lab Exercises
	 ∑	 Test Generator
	 ∑	 Projects
	 ∑	 Solutions to unsolved model question papers given

in the book
	 ∑	 Extra Reading Material – Versions of C, Sparse

matrix, Case study on Sorting
	 Comments and suggestions for the improvement
of the book are welcome. Please send them to me at
reemathareja@gmail.com.

Reema Thareja

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

Acknowledgements

The writing of this textbook was a mammoth task for which
a lot of help was required from many people. Fortunately,
I have had wholehearted support of my family, friends,
and fellow members of the teaching staff and students at
Shyama Prasad Mukherji College, New Delhi.
	 My special thanks would always go to my parents, Mr
Janak Raj Thareja and Mrs Usha Thareja, and my siblings,
Pallav, Kimi, and Rashi, who were a source of abiding

inspiration and divine blessings for me. I am especially
thankful to my son, Goransh, who has been very patient
and cooperative in letting me realize my dreams. My
sincere thanks go to my uncle, Mr B.L. Theraja, for his
inspiration and guidance in writing this book.
	 I would like to express my gratitude to the following
reviewers for their valuable suggestions and constructive
feedback that helped in improving the book.

Venkata Ram Kumar Bonam BVC Institute of Technology and Science, Amalapuram, Andhra Pradesh
G. Jena BVC Engineering College, Odalarevu , Andhra Pradesh
Mrinalini Nunna Andhra Loyola Institute of Engineering and Technology, Vijayawada, Andhra Pradesh
Ashok Nutalapati Dhanekula Institute of Engineering and Technology, Vijayawada, Andhra Pradesh
M. Venkateswerarao Malineni Perumallu Educational Society’s Group of Institutions, Guntur, Andhra Pradesh
M.V.R. Narasimharao BVC College of Engineering, Rajahmundry, Andhra Pradesh
P. Srinivas JNTU College of Engineering Campus, Guntur, Andhra Pradesh
Rama Satish Aravapalli DVR & Dr. HS MIC College of Technology, Kanchikacherla, Andhra Pradesh
N. Leelavathy Pragati Engineering College, Surampalem, Andhra Pradesh
Nekuri Naveen Sasi Institute of Technology and Engineering, Tadepalligudem, Andhra Pradesh
D. Haritha SRK Institute of Technology, Vijayawada, Andhra Pradesh
K. Narasimha Rao Vishnu Institute of Technology, Bhimavaram, Andhra Pradesh
Sripada Rama Sree Aditya Engineering College, Surampalem, Andhra Pradesh
V. Venkateswara Rao Sri Vasavi Engineering College, Tadepalligudem, Andhra Pradesh
M. Gargi Vignan’s Lara Institute of Technology and Science, Guntur, Andhra Pradesh
P. Srinivasa Rao University College of Engineering, Jawaharlal Nehru Technological University, Guntur, Andhra Pradesh
P. R. Krishna Prasad Vasireddy Venkatadri Institute of Technology, Guntur, Andhra Pradesh
A. Rama Rao Lendi Institute of Engineering and Technology, Vizinagaram, Andhra Pradesh
M. Venkata Rao Chirala Engineering College, Chirala, Andhra Pradesh
Bhanu Prakash Battula Tirumala Engineering College, Guntur, Andhra Pradesh
B. Renuka Devi Vignan’s Nirula Institute of Technology and Science for Women, Guntur, Andhra Pradesh
K. Venkat Rao Vignan Institute of Technology, Visakhapatnam, Andhra Pradesh
Ravi Sankar Vignan’s LARA Institute of Technology and Science, Guntur, Andhra Pradesh
P. Ravikiran Varma MVGR College of Engineering, Vizianagaram, Andhra Pradesh
B. Bhanu Pratap Reddy Universal Engineering College, Guntur, Andhra Pradesh
Gopala Reddy Kallam Ramachandra College of Engineering, Eluru, Andhra Pradesh

	 Last but not the least, I would like to thank the editorial team at Oxford University Press, India for their help and
support.

Reema Thareja

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

	 1.13.1	 System Software  28
	 1.13.2	 Application Software  32
	1.14	 Representation of Data: Bits and Bytes  34
	1.15	 Programming Languages  35
	1.16	 Generations of Programming Languages  36
	 1.16.1	 First Generation: Machine Language  36
	 1.16.2	 Second Generation: Assembly Language  37
	 1.16.3	 Third Generation: High-level Language  38
	 1.16.4	 Fourth Generation: Very High-level

Languages  39
	 1.16.5	 Fifth-generation Programming Language  39
	1.17	 Programming Paradigms  40
	 1.17.1	 Monolithic Programming  40
	 1.17.2	 Procedural Programming  40
	 1.17.3	 Structured Programming   41
	 1.17.4	 Object-oriented Programming (OOP)  42
	1.18	 Example of a Structured Program  42
	1.19	 Software Development Process  43
	1.20	 Program Design Tools: Algorithms, Flowcharts,

Pseudocodes  44
	 1.20.1	 Algorithms  44
	 1.20.2	 Flowcharts  46
	 1.20.3	 Pseudocodes  48
	1.21	 Types of Errors  49
	1.22	 Testing and Debugging Approaches  50

1.	 Computer History, Hardware,
Software, Programming
Languages, and Algorithms� 1

	 1.1	 Introduction  1
	 1.2	 What is a Computer?  1
	 1.3	 History of Computers  2
	 1.4	 Characteristics of Computers  4
	 1.5	 Classification of Computers  5
	 1.6	 Basic Applications of Computers  8
	 1.7	 Stored Program Concept  9
	 1.7.1	 Types of Stored Program Computers  10
	 1.8	 Components and Functions of a Computer

System  11
	 1.9	 Concept of Hardware and Software  12
	 1.9.1	 Hardware  12
	 1.9.2	 Software  12
	1.10	 Central Processing Unit (CPU) :

Basic Architecture  12
	 1.11	 Input and Output Devices  14
	1.12	 Computer Memory  22
	 1.12.1	 Memory Hierarchy  22
	 1.12.2	 Primary Memory  23
	 1.12.3	 Secondary Storage Devices  25
	1.13	 Classification of Computer Software  27

Detailed Contents

Preface 	 v
Acknowledgements 	 viii

Roadmap to the Syllabus	 xiv

UNIT I

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

x Detailed Contents

2.	 Introduction to C Programming	 61
	 2.1	 Introduction  61
	 2.1.1	 Background  61
	 2.1.2	 Characteristics of C  62
	 2.1.3	 Applications of C Language  63
	 2.1.4	 Advantages of C Language   63
	 2.1.5	 Disadvantages of C Language  63
	 2.2	 Structure of a C Program  64
	 2.3	 Writing the First C Program  64
	 2.4	 Files Used in a C Program  66
	 2.4.1	 Source Code Files  66
	 2.4.2	 Header files  66
	 2.4.3	 Object Files  67
	 2.4.4	 Binary Executable Files  67
	 2.5	 Compiling and Executing C Programs  67
	 2.6	 Using Comments  68
	 2.7	 Tokens in C  69
	 2.8	 Character Set in C  69
	 2.9	 Keywords  70
	2.10	 Identifiers  70
	 2.10.1	 Rules for Forming Identifier Names  70
	 2.11	 Data Types in C  71
	 2.11.1	 How are Float and Double Stored?  72
	2.12	 Variables  73
	 2.12.1	 Numeric Variables  73
	 2.12.2	 Character Variables  73
	 2.12.3	 Declaration Statements (or Declaring

Variables)  73
	 2.12.4	 Initialization (or Initializing Variables)  73
	2.13	 Constants  74
	 2.13.1	 Integer Constants  74

	 2.13.2	 Floating Point Constants  74
	 2.13.3	 Character Constants  75
	 2.13.4	 String Constants  75
	 2.13.5	 Declaring Constants  75
	2.14	 Input/Output Statements in C  75
	 2.14.1	 Streams  75
	 2.14.2	 Formatting input/output and Format

Modifiers  76
	 2.14.3	 printf()   76
	 2.14.4	 Interactive Input: scanf()  79
	 2.14.5	 Examples of printf()/scanf()  81
	 2.14.6	 Detecting Errors During Data Input  83
	2.15	 Operators in C  83
	 2.15.1	 Arithmetic Operators  83
	 2.15.2	 Relational Operators  85
	 2.15.3	 Equality Operators  86
	 2.15.4	 Logical Operators  86
	 2.15.5	 Unary Operators  87
	 2.15.6	 Conditional (or Ternary) Operator  88
	 2.15.7	 Bitwise Operators  89
	 2.15.8	 Assignment Operators  90
	 2.15.9	 Comma Operator  91
	 2.15.10	 Sizeof Operator  91
	 2.15.11	 Operator Precedence and Associativity  91
	2.16	 Expressions in C  97
	 2.16.1	 Types of Expressions  97
	2.17	 Type Conversion and

TypeCasting  97
	 2.17.1	 Type Conversion (Implicit)  98
	 2.17.2	 Typecasting (Explicit)  99
	Annexure 1  108

UNIT II

UNIT III

3.	 Control Flow, Relational Expressions,
and Logical Operators� 109

	 3.1	 Introduction to Decision Control Statements  109
	 3.2	 Conditional Branching Statements  109
	 3.2.1	 If Statement  109
	 3.2.2	 If–Else Statement  111
	 3.2.3	 If–Else–If (or Else–If)

Statement  113
	 3.2.4	 Switch Case  117
	 3.3	 Basic Loop Structures  121

	 3.3.1	 While Loop  121
	 3.3.2	 Do-While Loop  124
	 3.3.3	 For Loop  127
	 3.4	 Nested Loops  130
	 3.5	 The Break and Continue Statements  139
	 3.5.1	 break Statement  139
	 3.5.2	 continue Statement  140
	 3.6	 goto Statement  141
Case Study 1: Chapters 2 and 3  153

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

xiDetailed Contents

4.	 Modular Programming—
Functions� 157

	 4.1	 Introduction  157
	 4.1.1	 Why are functions needed?  157
	 4.2	 Using Functions  158
	 4.3	 Function Declaration  159
	 4.4	 Function Definition  160
	 4.5	 Function Call  160
	 4.6	 Returning a Value  162
	 4.6.1	 Using Variable Number of Arguments  162
	 4.7	 Passing Parameters to Functions  163
	 4.7.1	 Call-by-Value  163
	 4.7.2	 Call-by-Reference (or Passing

Addresses to a Function)  164
	 4.8	 Scope of Variables  168
	 4.8.1	 Block Scope  168
	 4.8.2	 Function Scope  169
	 4.8.3	 Program Scope  169
	 4.8.4	 File Scope  170

	 4.9	 Variable Storage Classes  170
	 4.9.1	 auto Storage Class (or Local Variable Storage

Class)  170
	 4.9.2	 extern Storage Class (or Global Variable

Storage Class)  171
	 4.9.3	 register Storage Class  172
	 4.9.4	 static Storage Class  172
	 4.9.5	 Comparison of Storage Classes  173
	4.10	 Recursive Functions  173
	 4.10.1	 Greatest Common Divisor  175
	 4.10.2	 Finding Exponents  175
	 4.10.3	 Fibonacci Series  176
	 4.11	 Recursion and Its Types  176
	 4.11.1	 Direct Recursion  176
	 4.11.2	 Indirect Recursion  176
	 4.11.3	 Tail Recursion  176
	 4.11.4	 Linear and Tree Recursion  177
	4.12	 Tower of Hanoi   177
	4.13	 Recursion versus Iteration  179
	Annexure 2  186

UNIT I V

UNIT  V

5.	 Arrays	 187
	 5.1	 Introduction  187
	 5.2	 Declaration and Initiaization of Arrays  188
	 5.2.1	 Array Initialization during Declaration  189
	 5.3	 Input of Array Values  189
	 5.3.1	 Assigning Values to Individual Elements  189
	 5.4	 Accessing and Storing the Elements of an

Array  190
	 5.4.1	 Calculating the Address of Array

Elements  190
	 5.4.2	 Calculating the Length of an Array  191
	 5.4.3	 Storing Values in Arrays  191
	 5.5	 Output of Array Values  192
	 5.6	 Operations on Arrays  192
	 5.6.1	 Traversing an Array  192
	 5.6.2	 Inserting an Element in an Array  197
	 5.6.3	 Deleting an Element from an Array  199
	 5.6.4	 Searching for a Value in an Array  201
	 5.7	 Arrays as Function Arguments  204
	 5.8	 Two-Dimensional Arrays  206
	 5.8.1	 Declaring Two-dimensional Arrays  207
	 5.8.2	 Initializing Two-dimensional Arrays  208

	 5.8.3	 Accessing the Elements of Two-dimensional
Arrays  209

	 5.9	 Operations On Two-dimensional Arrays
(Matrices)  211

	5.10	 Passing Two-Dimensional Arrays to functions  215
	 5.10.1	 Passing a row  215
	 5.10.2	 Passing an entire 2D Array  215
	 5.11	 Multidimensional Arrays  217
	5.12	 Applications of Arrays  219

6.	 Strings	 223

	 6.1	 Introduction (String Fundamentals)  223
	 6.1.1	 String Input  225
	 6.1.2	 String Output  225
	 6.1.3	 functions used to read and write

characters  226
	 6.2	 Suppressing Input  227
	 6.2.1	 Using a Scanset  227
	 6.3	 String Taxonomy  228
	 6.4	 String Processing  229
	 6.4.1	 Finding the Length of a String  229

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

xii Detailed Contents

	 6.4.2	 Converting Characters of a String into
Upper Case  230

	 6.4.3	 Converting Characters of a String Into Lower
Case  231

	 6.4.4	 Concatenating Two Strings to Form a New
String  231

	 6.4.5	 Appending a String to Another String  232
	 6.4.6	 Comparing two strings  232
	 6.4.7	 Reversing a String  233
	 6.4.8	 Extracting a Substring from left  234
	 6.4.9	 Extracting a Substring from right of the

string  235

	 6.4.10	 Extracting a Substring from the middle of a
string  235

	 6.4.11	 Inserting a String in Another String  236
	 6.4.12	 Indexing  237
	 6.4.13	 Deleting a String from the Main String  237
	 6.4.14	 Replacing a Pattern with Another Pattern in a

String  238
	 6.5	 Miscellaneous String and Character Functions  239
	 6.5.1	 Character Manipulation Functions  239
	 6.5.2	 String Library Functions  239
	 6.6	 Arrays of Strings  245

UNIT  VI

7.	 Pointers	 256
	 7.1	 Understanding the Computer’s Memory  256
	 7.2	 Concept of a Pointer  257
	 7.3	 Declaring and Initializing Pointer Variables  258
	 7.4	 Pointer Expressions and Address Arithmetic  260
	 7.5	 Null Pointers  264
	 7.6	 Generic Pointers  265
	 7.7	 Pointers as Function Arguments  265
	 7.8	 Pointers and Arrays  266
	 7.9	 Character Pointer  270
	 7.9.1	 Character Pointer to Functions  270
	7.10	 Passing an Array to a Function  270
	 7.11	 Difference Between Array Name and Pointer  271
	7.12	 Pointers and Strings  272
	7.13	 Arrays of Pointers  276
	7.14	 Pointers and 2D Arrays  277
	7.15	 Pointers and 3D Arrays  280
	7.16	 Function Pointers  280
	 7.16.1	 Initializing a function pointer  281
	 7.16.2	 Calling a function using a function

pointer  281
	 7.16.3	 Comparing Function Pointers  281
	 7.16.4	 Passing a Function Pointer as an Argument to a

Function  281
	7.17	 Array of Function Pointers  282
	7.18	 Pointers to Pointers  283
	7.19	 Memory Allocation in C Programs  283
	7.20	 Memory Usage  283
	7.21	 Dynamic Memory Allocation  284
	 7.21.1	 Memory allocation process  284
	 7.21.2	 Malloc() and Calloc(): Allocating a

block of memory  284
	 7.21.3	 Free(): Releasing the used Space  285
	 7.21.4	 Realloc(): to alter the size of allocated

memory  286

	7.22	 Drawbacks of Pointers  288
	7.23	 Command Line Arguments  289
	Annexure 3  297
Case Study 2: Chapters 6 and 7  300

8.	 Structures, Unions, and Bit
Fields� 303

	 8.1	 Introduction  303
	 8.1.1	 Structure Declaration  303
	 8.1.2	 typedef Declarations  305
	 8.1.3	 Initialization of Structures  305
	 8.1.4	 Accessing Structures  306
	 8.1.5	 Copying and Comparing Structures  306
	 8.2	 Nested Structures  309
	 8.3	 Arrays of Structures  310
	 8.4	 Structures and Functions  312
	 8.4.1	 Passing Individual Members  312
	 8.4.2	 Passing the Entire Structure  312
	 8.4.3	 Passing Structures Through Pointers (Pointers to

Structures)  315
	 8.5	 Self-Referential Structures  320
	 8.6	 Unions  320
	 8.6.1	 Declaring a union  320
	 8.6.2	 Accessing a Member of a Union  321
	 8.6.3	 Initializing Unions  321
	 8.7	 Arrays of Union Variables  322
	 8.8	 Unions Inside Structures  322
	 8.9	 Structures Inside Unions  323
	8.10	 Enumerated Data Type  323
	 8.10.1	 enum Variables  324
	 8.10.2	 Using the Typedef Keyword  325
	 8.10.3	 Assigning Values to Enumerated Variables  325
	 8.10.4	 Enumeration Type Conversion  325

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

xiiiDetailed Contents

	 8.10.5	 Comparing Enumerated Types  325
	 8.10.6	 Input/Output Operations on Enumerated

Types  325
	 8.11	 Bit Fields  326

9.	 Data Files	 333
	 9.1	 Introduction to Files  333
	 9.1.1	 Streams in C  333
	 9.1.2	 Buffer Associated with File Stream  334
	 9.1.3	 Types of Files  334
	 9.2	 Using Files in C  335
	 9.2.1	 Declaring a File Pointer Variable  335
	 9.2.2	 Opening File Stream: fopen()  335
	 9.2.3	 Closing File Stream: fclose()  337
	 9.3	 Reading From Text File  337
	 9.3.1	 fscanf()  337
	 9.3.2	 fgets()  338
	 9.3.3	 fgetc()  339
	 9.3.4	 fread()  339

	 9.3.5	 fgetw()  340
	 9.4	 Writing to Text Files  341
	 9.4.1	 fprintf()  341
	 9.4.2	 fputs ()  342
	 9.4.3	 fputc()  342
	 9.4.4	 fwrite()  343
	 9.4.5	 fputw()  343
	 9.5	 Detecting the End-of-File  344
	 9.6	 Error Handling During File Operations  344
	 9.6.1	 clearerr()  345
	 9.6.2	 perror()  345
	 9.7	 Random File Access  359
	 9.7.1	 fseek()  359
	 9.7.2	 ftell()  361
	 9.7.3	 rewind()  361
	 9.7.4	 fgetpos()  362
	 9.7.5	 fsetpos()  362
	 9.8	 remove()  363
	 9.9	 Renaming the File  363
	9.10	 Creating a Temporary File  363

Appendix A:	ASCII Chart of Characters	 368
Appendix B:	ANSI C Library Functions	 370
Appendix C:	Preprocessors and Inline Functions	 377
Appendix D:	Bit-level Programming and Bitwise

Shift Operators	 382
Appendix E:	Answers to Objective-type Questions	 384
Solved Model Question Paper-I	 389

Solved Model Question Paper-II	 390
Solved Model Question Paper-III	 391
Unsolved Model Question Paper-I	 392
Unsolved Model Question Paper-II	 393
About the Author	 394

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

ROAD MAP TO THE SYLLABUS
Computer Programming

(As per JNTU Kakinada R16 syllabus)

Syllabus Chapter/ Section no.

UNIT I

History and Hardware– Computer hardware, bits and bytes, components.
Programming Languages– Machine language, assembly language, low- and high-level
languages, procedural and object-oriented languages. Application and system software, the
development of C algorithms, the software development process.

1.	Computer History, Hardware,
Software, Programming Languages,
and Algorithms

UNIT II

Introduction to C Programming– Identifiers, the main() function, the printf() function.
Programming Style– Indentation, comments, data types, arithmetic operations, expression
types, variables and declarations, negation, operator precedence and associativity, declaration
statements, initialization.
Assignment– Implicit type conversions, explicit type conversions (casts), assignment variations,
mathematical library functions, interactive input, formatted output, format modifiers.

2.	 Introduction to C Programming

UNIT III

Control Flow, Relational Expressions, Logical Operators:
Selection– if-else statement, nested if, examples, multi-way selection– switch, else-if, examples.
Repetition– Basic loop structures, pretest and posttest loops, counter-controlled and condition-
controlled loops, the while statement, the for statement, nested loops, the do-while statement.

3.	Conditional Flow, Relational
Expressions and Logical Operators

UNIT IV

Modular Programming– Function and parameter declarations, returning a value, functions
with empty parameter lists, variable scope, variable storage class, local variable storage
classes, global variable storage classes, pass by reference, passing addresses to a function,
storing addresses, using addresses, declaring and using pointers. Case study– Swapping values.
Recursion– mathematical recursion, recursion.

4.	Modular Programming– Functions
(For storing addresses, using
addresses, declaring and using
pointers, passing addresses to a
function – Also refer to Sections 7.3
and 7.7)

UNIT V

Arrays– One-dimensional arrays, input and output of array values, array initialization, arrays as
function arguments, two-dimensional arrays, larger dimensional arrays–matrices.

5.	Arrays

Strings– String fundamentals, string input and output, string processing, library functions. 6.	Strings

UNIT VI

Pointers – Concept of a pointer, initialization of pointer variables, pointers as function
arguments, passing by address, dangling memory, address arithmetic, character pointers
and functions, pointers to pointers, dynamic memory management functions, command line
arguments

7.	Pointers

Structures– Derived types, structures declaration, initialization of structures, accessing
structures, nested structures, arrays of structures, structures and functions, pointers to structures,
self-referential structures, unions, typedef, bit-fields.

8.	Structures, Unions and Bit Fields
(For derived types – Also refer
Section 2.11)

Data Files– Declaring, opening, and closing file streams, reading from and writing to text files,
random file access.

9.	Data Files

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

1Computer History, Hardware, Software, Programming Languages, and Algorithms

1.1  INTRODUCTION

We all have seen computers in our homes, schools, or
colleges. In fact, in today’s scenario we find computers in
most aspects of daily life, and for some it is hard to even
imagine a world without them. A computer is basically a
machine that takes instructions and performs computations
based on those instructions.
	 Nowadays computers come in different sizes. Their
size may vary from very small to very large. In the past,
computers were extremely large in size and required an
entire room for installation. These computers consumed
enormous amounts of power and were too expensive to
be used for commercial applications. Therefore, they
were used only for limited tasks, such as computing
trajectories for astronomical or military applications.

However, with technological advancements, the size of
computers became smaller and their energy requirements
lowered immensely. This opened the way for adoption of
computers for commercial purposes.
	 These days, computers have become so prevalent in
the market that all interactive devices such as cellular
phones, global positioning system (GPS) units, portable
organizers, automated teller machines (ATMs), and gas
pumps work with computers.

1.2  WHAT IS A COMPUTER?

A computer is an electronic machine that takes instructions
and performs computations based on those instructions.
Before going into details, let us learn some key terms that
are frequently used in computers.

∑  Characteristic of computers	 ∑  History of computer	 ∑  Stored program concept
∑  Types of computers	 ∑  Applications of computers	 ∑  Basic architecture and organization of
∑  Components of a computer	 ∑  Computer hardware and software		 computer
∑  CPU	 ∑  Input and Output devices	 ∑  Computer memory
∑  System software 	 ∑  Translators	 ∑  Application software
∑  Generations of programming	 ∑  Programming paradigms	 ∑  Software development process
	  languages	 ∑  Algorithms	 ∑  Flowcharts
∑  Pseudocodes	 ∑  Types of errors	 ∑  Testing and debugging

Takeaways

Computer History,
Hardware, Software,
Programming Languages,
and Algorithms

1Chapter

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

2 Computer Programming

Data  Data is a collection of raw facts or figures.

Information  Information comprises processed data to
provide answers to ‘who’, ‘what’, ‘where’, and ‘when’
type of questions.

Knowledge  Knowledge is the application of data
and information to answer ‘how’ part of the question
(Refer Figure 1.1).

Instructions  Commands given to the computer that tells
what it has to do are instructions.

Programs  A set of instructions in computer language is
called a program.

Software  A set of programs is called software.

Hardware  A computer and all its physical parts are known
as hardware.

Data Processed Information
Collected

and applied
Knowledge

Figure 1.1  Data, information, and knowledge

1.3  History of Computers

History of computers can be understood by looking into
five generations. With each new generation of computers,
there had been advancement in computer technology.
The circuitry became smaller with enhanced speed, less
consumption of power, and efficient memory.
	 Therefore, each generation of computer is characterized
by a major technological development that has drastically
changed the way in which computers operate.

First Generation (1942–1955)

Hardware Technology  First gen-
eration computers were manufac-
tured using thousands of vacuum
tubes. Vacuum tube (as shown in
Figure 1.2) is a device made of
fragile glass.

Software Technology  Program-
ming was done in machine lan-
guage or assembly language.

Used for  Scientific applications

Figure 1.2  Vacuum
tube

Source:  Vladyslav Danilin/
Shutterstock

Examples  ENIAC, EDVAC, EDSAC, UNIVAC I, IBM
701

Highlights

•	 They were the fastest calculating device of those times.
•	 Computers were too bulky and required a complete

room for storage.
•	 Highly unreliable as vacuum tubes emitted a large

amount of heat and burnt frequently.
•	 Required air-conditioned room for installation.
•	 Costly.
•	 Difficult to use.
•	 Required constant maintenance because vacuum tubes

used filaments that had limited lifetime. Therefore, these
computers were prone to frequent hardware failures.

Second Generation (1955–1964)

Hardware Technology  Second generation computers
were manufactured using transistors (as shown in Figure
1.3). Transistors were reliable, powerful, cheaper, smaller,
and cooler than vacuum tubes.

Figure 1.3  Transistors

Source:  yurazaga/Shutterstock

Software Technology  Programming was done in high
level programming language.

Used for  Scientific and commercial applications

Examples  Honeywell 400, IBM 7030, CDC 1604,
UNIVAC LARC

Highlights

•	 Faster, smaller, cheaper, reliable, and easier to use than
the first generation computers.

•	 Consumed 1/10th the power consumed by first
generation computers.

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

3Computer History, Hardware, Software, Programming Languages, and Algorithms

•	 Bulky in size and required a complete room for its
installation.

•	 Dissipated less heat than first generation computers but
still required air-conditioned room.

•	 Costly.
•	 Difficult to use.

Third Generation (1964–1975)

Hardware Technology  Third generation computers were
manufactured using integrated chips (ICs) as shown in
Figure 1.4. ICs consist of several components such as
transistors, capacitors, and resistors on a single chip to
avoid wired interconnection between components. These
computers used SSI and MSI technology. Minicomputers
came into existence.

Note

Initially, ICs contained 10–20 components. This technology
was called Small Scale Integration (SSI). Later it was
enhanced to contain about 100 components. This was
called MSI (Medium Scale Integration).

Figure 1.4  Integrated chip
Source:  cooldesign/FreeDigitalPhotos.net

Software Technology  Programming was done in high
level programming language such as FORTRAN, COBOL,
Pascal, and BASIC.

Used for  Scientific, commercial, and interactive online
applications.

Examples  IBM 360/370, PDP–8, PADP-11, CDC6600

Highlights

•	 Faster, smaller, cheaper, reliable, and easier to use than
the second generation computers.

•	 They consumed less power than second generation
computers.

•	 Bulky in size and required a complete room for its
installation.

•	 Dissipated less heat than second generation computers
but still required air-conditioned room.

•	 Costly.
•	 Easier to use and upgrade.

Fourth Generation (1975–1989)

Hardware Technology  Fourth generation computers were
manufactured using ICs with LSI (Large Scale Integrated)
and later with VLSI (Very Large Scale Integrated)
technology as shown in Figure 1.5. Microcomputers came
into existence, and use of personal computers became
widespread during this period. High speed computer
networks in the form of LANs, WANs, and MANs started
growing. Besides mainframes, supercomputers were also
used.

Figure 1.5  VLSI

Note

LSI contained 30,000 components on a single chip and VLSI
technology had about 1 million electronic components on
a single chip.

Software Technology  Programming was done in high
level programming language like C, C++. Graphical user
interface (GUI) based operating system (like Windows)
was introduced. It had icons and menus among other
features to allow computers to be used as a general purpose
machine by all users.

Used for  Scientific, commercial, interactive online, and
network applications.

Examples  IBM PC, Apple II, TRS–80, VAX 9000,
CRAY–1, CRAY–2, CRAY–X/MP

Highlights  Faster, smaller, cheaper, powerful, reliable,
and easier to use than the previous generation computers.

Fifth Generation (1989–Present)

Hardware Technology  Fifth generation computers were
manufactured using ICs with ULSI (Ultra Large Scale

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

4 Computer Programming

Integrated) technology as shown in Figure 1.6. Use of
Internet became widespread. Very powerful mainframes,
desktops, portable laptops, smartphones are being used
commonly. Super computers use parallel processing
techniques.

Note

ULSI contained about 10 million electronic components
on a single chip.

Software Technology  Programming was done in high
level programming language such as Java, Python, C#.

Figure 1.6  ULSI

Used for  Scientific, commercial, interactive online,
multimedia (graphics, audio, video), and network
applications.

Examples  IBM notebooks, Pentium PCs, SUM
workstations, IBM SP/2, Param supercomputer.

Highlights

•	 Faster, smaller, cheaper, powerful, reliable, and easier to
use than the previous generation computers.

•	 Speed of microprocessors and the size of memory are
growing rapidly.

•	 High-end features available on mainframe computers
in the fourth generation are now available on the
microprocessors.

•	 Consume less power than computers of prior generations.
•	 Air-conditioned rooms required for mainframes and

supercomputers but not for microprocessors.

1.4  Characteristics of Computers

The important characteristics of a computer (as shown in
Figure 1.7) are given below:

Econom
ical

No I
Q

Large
memoryComputers

Automation

Diligence

Accuracy

Sp
ee

d

Vers
ati

lity

Figure 1.7  Characteristics of computer

Speed  Computers can perform millions of operations in a
single second. This means that a computer can process the
data in blink of an eye which otherwise may take multiple
days to complete. The speed of the computer is usually
given in nano second and pico second, where

	 1 nano second=1*10–9 second 	
	 1 pico second=1*10–12 second

Accuracy  Computers are a reliable electronic device. It
never makes mistakes. It always gives accurate results
provided that correct data and set of instructions are input
to it. So in the advent of an error, only the user who has
fed the incorrect data/program is responsible. If the input
data is wrong, then the output will also be erroneous. In
computer terminology, it is known as garbage-in garbage-
out (GIGO).

Automatic  Besides being very fast and accurate,
computers are automatic devices that can perform without
any user intervention. The user just needs to assign the task
to the computer after which the computer automatically
controls different devices attached to it and executes the
program instructions one by one.

Diligence  Computers can never get tired as humans do. It
can continually work for hours without creating any error.
If a large number of executions have to be made then each
and every execution will require the same amount of time
and accuracy.

Versatile  Versatile means flexible. Today, computers
are being used in our daily lives in different fields. For
example, they are used as personal computers (PCs) for
home use, for business-oriented tasks, weather forecasting,

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

5Computer History, Hardware, Software, Programming Languages, and Algorithms

space explorations, teaching, railways, banking, medicine,
etc. On the PC that you use at home, you may play a game,
compose and send e-mails, listen to music, etc. Therefore,
computers are versatile devices as they can perform
multiple tasks of different nature at the same time.

Memory  Similar to humans, computers also have
memory. Human beings cannot store everything in their
memory and need secondary media, such as a notebook
to record certain important things. Similarly, computers
have internal memory (storage space) as well as external
or secondary memory. While the internal memory of
computers is very expensive and limited in size, the
secondary storage is cheaper and bigger in size.
	 The computer stores a large amount of data and
programs in the secondary storage space. The stored data
and programs can be used whenever required. Secondary
memory devices include CD, DVD, hard disk, pen drives,
etc.

Note

When data and programs have to be used they are copied
from the secondary memory into the internal memory
(often known as RAM).

No IQ  Although the trend today is to make computers
intelligent by inducing artificial intelligence (AI) in them,
they do not have any decision-making abilities of their
own, that is, their IQ level is zero. They need guidance to
perform various tasks.

Economical  Today, computers are considered as short-
term investment for achieving long-term gain. Using
computers also reduces manpower requirements and leads
to an elegant and efficient way for doing tasks. Hence,
computers save time, energy, and money. When compared
to other systems, computers can do more work in lesser
time. For example, using the conventional postal system
to send an important document takes at least 2–3 days,

whereas the same information when sent using the Internet
(e-mail) will be delivered instantaneously.

1.5  Classification of Computers
Computers can be broadly classified into four categories
based on their speed, amount of data that they can process,
and price (refer to Figure 1.8). These categories are as
follows:
•	 Supercomputers
•	 Mainframe computers
•	 Minicomputers
•	 Microcomputers

Supercomputers

Among the four categories, the supercomputer is the
fastest, most powerful, and most expensive computer.
Supercomputers were first developed in the 1980s to
process large amounts of data and to solve complex
scientific prob-lems. Supercomputers use parallel
processing technology and can perform more than one
trillion calculations in a second.
	 A single supercomputer can support thousands of
users at the same time. Such computers are mainly used
for weather forecasting, nuclear energy research, aircraft
design, automotive design, online banking, controlling
industrial units, etc. Some examples of supercomputers
are CRAY-1, CRAY-2, Control Data CYBER 205, and
ETA A-10.

Mainframe Computers

Mainframe computers are large-scale computers (but
smaller than supercomputers). These are very expensive
and need a very large clean room with air conditioning,
thereby making them very costly to deploy. As with
supercomputers, mainframes can also support multiple
processors. For example, the IBM S/390 mainframe can

Classi�cation of computers

Supercomputers Mainframe computers Minicomputers Microcomputers

Dumb terminals Intelligent terminals Desktop PCs Laptops Handheld devices

Workstations Network computers

Figure 1.8  Classification of computers

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

6 Computer Programming

support 50,000 users at the same time. Users can access
mainframes by either using terminals or via PCs.
	 Mainframe computers are typically used as servers on
the World Wide Web. They are also used in organizations
such as banks, airline companies, and universities, where
a large number of users frequently access the data stored
in their databases. IBM is the major manufacturer of
mainframe computers. Some examples of mainframe
computers include IBM S/390, Control Data CYBER 176,
and Amdahl 580.

Minicomputers

As the name suggests, minicomputers are smaller,
cheaper, and slower than mainframes. They are called
minicomputers because they were the smallest computer
of their times. Also known as midrange computers, the
capabilities of minicomputers fall between mainframe and
personal computers.
	 Minicomputers are widely used in business, education,
hospitals, government organizations, etc. While some
minicomputers can be used only by a single user, others
are specifically designed to handle multiple users
simultaneously. Usually, single-user minicomputers are
used for performing complex design tasks.
	 As with mainframes, minicomputers can also be used
as servers in a networked environment, and hundreds of
PCs can be connected to it.
	 The first minicomputer was introduced by Digital
Equipment Corporation (DEC) in the mid-1960s. Other
manufacturers of minicomputers include IBM Corporation
(AS/400 computers), Data General Corporation, and
Prime Computer.

Microcomputers

Microcomputers, commonly known as PCs, are very small
and cheap. The first microcomputer was designed by IBM
in 1981 and was named IBM-PC. Later on, many computer
hardware companies copied this design and termed their
microcomputers PC-compatible, which refers to any PC
that is based on the original IBM PC design.
	 Another type of popular PC is designed by Apple. PCs
designed by IBM and other PC-compatible computers
have a different architecture from that of Apple computers.
Moreover, PCs and PC-compatible computers commonly
use the Windows operating system, while Apple computers
use the Macintosh operating system (MacOS). PCs can be
classified into the following categories:

Desktop PCs  A desktop PC is the most popular model of
PCs. The system unit of the desktop PC can be placed flat
on a desk or table. It is widely used in homes and offices.

Laptops  Laptops (Figure 1.9) are small microcomputers
that can easily fit inside a briefcase. They are very handy
and can easily be carried from one place to another. They
may also be placed on the user’s lap (thus the name).
Hence, laptops are very useful, especially when going on
long journeys. Laptops operate on a battery and do not
always have to be plugged in like desktop computers.

Figure 1.9  Laptop

Source:  You can more/Shutterstock

	 The memory and storage capacity of a laptop is almost
equivalent to that of a desktop computer. As with desktop
computers, laptops also have hard disk drives, USB
drives, etc. For input, laptops have a built-in keyboard and
a trackball/touchpad, which is used as a pointing device
(as a mouse is used for a desktop PC).
	 Today, laptops have the same features and processing
speed as the most powerful PCs. However, a drawback
is that laptops are generally more expensive than desktop
computers. These computers are very popular among
business travellers.

Workstations  Workstations are single-user computers that
have the same features as PCs, but their processing speed
matches that of a minicomputer or mainframe computer.
Workstation computers have advanced processors, more
RAM and storage capacity than PCs. Therefore, they
are more expensive and powerful than a normal desktop
computer.

	 Although workstation computers are widely used as
powerful single-user computers by scientists, engineers,
architects, and graphic designers, they can also be used as
servers in a networked environment.

Network Computers  Network computers have less
processing power, memory, and storage than a desktop
computer. These are specially designed to be used as
terminals in a networked environment. For example, some

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

7Computer History, Hardware, Software, Programming Languages, and Algorithms

network computers are specifically designed to access data
stored on a network (including the Internet and intranet).

	 Some network computers do not have any storage space
and merely rely on the network’s server for data storage and
processing tasks. The concept of network computers had
become popular in the mid-1990s when several variations
of computers such as Windows terminals, NetPCs, and
diskless workstations were widely used.

	 Network computers that are specifically designed to
access only the Internet or intranet are often known as
Internet PCs or Internet boxes. Some network computers
used in homes do not even have a monitor. Such computers
may be connected to a television, which serves as the
output device. The most common example of a home-based
network computer is Web TV, which enables the user to
connect a television to the Internet. The other reason for the
popularity of network computers is that they are cheaper to
purchase and maintain than PCs.

Handheld Computers  The mid-1990s witnessed a range
of small personal computing devices that are commonly
known as handheld computers, or mobile computers. These
computers are called handheld computers because they
can fit in one hand, while users can use the other hand to
operate them. Handheld computers are very small in size,
and hence they have small-sized screens and keyboards.
These computers are preferred by business travellers and
mobile employees whose jobs require them to move from
place to place.

	 Some examples of handheld computers are as follows:
•	 Smartphones
•	 Tablet PCs
Smartphones  These days, cellular phones are web-enabled
telephones that have features of both analog and digital
devices. Such phones are also known as smartphones
because, in addition to basic phone capabilities, they also
facilitate the users to access the Internet and send e-mails
and faxes.
Tablet PCs  A tablet PC (refer Figure 1.10) is a computing
device that is smaller than a laptop, but bigger than a
smartphone. Features such as user-friendly interface,
portability, and touch screen have made them very
popular in the last few years. These days, a wide range
of high-performance tablets are available in the market.
While all of them look similar from outside, they may
differ in features such as operating system, speed of data
connectivity, camera specifications, size of the screen,
processing power, battery life, and storage capability.

Figure 1.10  Tablet

Source:  bloomua/Shutterstock/OUP Picture Bank

	 Some operating systems that are used in tablets are
Android Jellybean (an open-source operating system built
by Google), Windows 8, and iOS (developed by Apple).
	 While users can easily type directly on the surface of a
tablet, some users prefer a wireless or bluetooth-connected
keyboard. These days, tablets also offer an optional
docking station with keyboards that transforms the tablet
into a full-featured netbook.

Uses  The following are the uses of tablet PCs:
•	 Viewing presentations
•	 Videoconferencing
•	 Reading e-books, e-newspaper
•	 Watching movies
•	 Playing games
•	 Sharing pictures, video, songs, documents, etc.
•	 Browsing the Internet
•	 Keeping in touch with friends and family on popular

social networks, sending emails
•	 Business people use them to perform tasks such as

editing documents, exchanging documents, taking
notes, and giving presentations

•	 Tablets are best used in crowded places such as airports
and coffee shops, where size and portability become
more important.

Note

Tablets may replace laptops if users don’t have to perform
heavy processing tasks and do not require a CD or DVD
player.

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

8 Computer Programming

1.6  Basic Applications of
Computers

When the first computers were developed, they were used
only in the fields of mathematics and science. In fact, the
first effective utilization of computers was for decoding
messages in military applications. Later on, computers
were used in real-time control systems, such as for
landing on the moon. However, with the advancement of
technology, the cost of a computer and its maintenance
declined. This opened the way for computers extensively
being used in business and commercial sector for
information processing. Today, computers are widely used
in different fields as discussed below.

Communication  Internet which connects computers all
over the world. Internet gives you access to enormous
amount of information much more than you could have in
a library. Then using electronic mail you can communicate
in seconds with a person who is thousands of miles away.
The chat software enables you to chat with another person
in real-time (irrespective of the physical location of that
person). Then, video conferencing tools are becoming
popular for conducting meetings with people who are
unable to be present at a particular place.

Desktop Publishing  Desktop publishing software enables
you to create page layouts for entire books.

Government  Computers are used to keep records on
legislative actions, Internal Revenue Service records, etc.

Traffic Control  It is used by governments for city planning
and traffic control.

Legal System  Computers are being used by lawyers to
shorten the time required to conduct legal precedent and
case research. Lawyers use computers to look through
millions of individual cases and find whether similar
or parallel cases were approved, denied, criticized, or
overruled. This enables the lawyers to formulate strategies
based on past case decisions. Moreover, computers are
also used to keep track of appointments and prepare legal
documents and briefs in time for filling cases.

Retail Business  Computers are used in retail shops to
enter the order, calculate the cost, and print a receipt. They
are also used to keep an inventory of the products available
and a complete description about them.

Sports  In sports, computers are used to compile statistics,
identify weak players and strong players by analysing

statistics, sell tickets, create training programs and diets
for athletes, and suggest game plan strategies based on the
competitor’s past performance. Computers are also used
to generate most of the graphic art displays flashed on
scoreboards.
	 Computers are used in the control room to display
action replays and insert commercial breaks on schedule.
Moreover, sports shoes manufacturing companies, like
NIKE, use computers for designing footwears. They
calculate stress points and then create the style and shape
that offer maximum support for the foot.

Music  Computers are used to generate a variety of sounds.
Moreover, the background music in movies, television
shows, and commercials are all generated electronically
using computers.

Movies  Computers are used to create sets, special effects,
animations, cartoons, imaginary characters, videos, and
commercials.

Travel and Tourism  Computers are used to prepare ticket,
monitor the train’s or airplane’s route, or guide the plane
to a safe landing. They are also used to know about hotels
in an area, reserve room, or rent a car.

Business and Industry  In business and industry,
computers are used mainly for entering and analysing data,
pay roll processing, personnel record keeping, inventory
management, etc.

Hospitals  Hospitals use computers to record every
information about a patient from the time of his admission
till his exit. For example the date, time, reason of admit,
the doctor being consulted, all prescribed medications,
doctor visits, other hospital services, bill, etc. are all stored
in computers. Moreover, computer-controlled devices
are widely used to monitor pulse rate, blood pressure,
and other vital signs of the patient and in an emergency
situation an alarm is used to notify the nurses and other
attendants.
	 Moreover, computers are used as an aid to physically
handicapped people. For example, computers are used to
develop more effective artificial limbs for amputees.

Simulation  Computers enable the engineers to design
aircraft models and simulate the effects that winds and
other environmental forces might have on those designs.
Even the astronauts at NASA are trained using computer-
simulated problems that could be encountered during
launch, in space, or upon return to Earth.

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

9Computer History, Hardware, Software, Programming Languages, and Algorithms

Geology  Civil engineers use computers to evaluate the
effects of an earthquake on the structure of buildings
based on age, proximity to the fault, soil type, size, shape,
and construction material.

Astronomy  Spacecrafts are usually monitored using
compu-ters which not only keep a continuous record of
the voyage and the records of the speed, direction, fuel,
temperature, and such performance but also suggests a
corrective action if the vehicle makes any mistake. The
remote stations on the earth compares all these quantities
with the desired values and in case these values need to
be modified to enhance the performance of the space
craft, signals are immediately sent which set in motion
the mechanics to rectify the situation. With the help of
computers, these are done within a fraction of seconds.

Weather Forecasting  When computers are fed with
mathematical equations along with data about air pressure,
temperature, humidity, and other values, the solution of
these equations gives an accurate prediction of weather in a
particular area. For example, a Crax XMP Supercomputer
installed at Mausam Bhavan in New Delhi is used to
predict weather and climatic changes in the Indian sub-
continent.

Education  A computer is a powerful teaching aid and
acts as another teacher in the classroom. Teachers use
computers to develop instructional material. They may
use pictures, graphs, and graphical presentations to easily
illustrate an otherwise difficult concept. Moreover, teachers
at all levels can use computers to administer assignments
and keep track of grades of the students. Besides teachers,
students also prefer to learn from an E-learning software
rather than learning from a book. Students can also give
online exams and get instant results.

Online Banking  The world today is moving towards
a cashless society, where you need not have money in
your pocket to purchase anything. You can just have your
credit card or debit card with you. The ATM machines
(Automated Teller Machine) provides a 24 × 7 service
and allows you to draw cash, check the balance in your
account, and order a product.

Industry and Engineering  Computers are found in all
kinds of industries like thermal power plant, oil refineries,
chemical industries, etc. for process control, computer
aided designing, and computer aided manufacturing.
	 Computerized process control (with or without human
intervention) is used to enhance efficiency in applications
such as production of various chemical products, oil
refining, paper manufacture, rolling and cutting steel to

customer requirements, etc.
	 In Computer Aided Design (CAD), the computers are
used for automating the design and drafting process.
It helps an engineer to design a part, analyse its
characteristics, and then subject it to simulated stresses.
In case a part fails the stress test, its specifications can be
modified on the computer and retested. The final design
specifications are released for production only when the
engineer is satisfied that the part meets strength and other
quality considerations.
	 Computer-aided manufacturing (CAM) phase comes
up where CAD leaves off. In this phase, the metal or other
materials are manufactured while complying with their
specification. For this computer-controlled manufacturing
tools are used to produce high-quality products.

Robots  Robots are computer-controlled machines mainly
used in manufacturing process in extreme conditions where
humans cannot work. For example, in high temperature,
high pressure conditions or in processes that demand very
high level of accuracy.

Decision Support Systems  Computers help managers to
analyse their organization’s data to understand the present
scenario of their business, view the trends in the market,
and predict the future of their products. Managers also use
decision support systems to analyse market research data,
to size up the competition, and to plan effective strategies
for penetrating their markets.

Expert System  Expert systems are used to automate the
decision-making process in a specific area like analysing
the credit histories for loan approval and diagnosing
a patient’s condition for prescribing an appropriate
treatment. Expert systems analyse the available data in
depth to recommend a course of action. A medical expert
system can provide the most likely diagnosis of a patient’s
condition.

Others  Adding more to it, in today’s scenario computers
are used to find jobs on the Internet, find a suitable match
for a boy or girl, read news and articles online, find one’s
batchmates, send and receive greetings pertaining to
different occasions, etc.

1.7	 Stored Program Concept

All digital computers are based on the principle of stored
program concept,which was introduced by Sir John von
Neumann in the late 1940s. The following are the key
characteristic features of this concept:

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

10 Computer Programming

•	 Before any data is processed, instructions are read into
memory.

•	 Instructions are stored in the computer’s memory for
execution.

•	 Instructions are stored in binary form (using binary
numbers—only 0s and 1s).

•	 Processing starts with the first instruction in the program,
which is copied into a control unit circuit. The control
unit executes the instructions.

•	 Instructions written by the users are performed
sequentially until there is a break in the current flow.

•	 Input/Output and processing operations are performed
simultaneously. While data is being read/written, the
central processing unit (CPU) executes another program
in the memory that is ready for execution.

Note

A stored program architecture is a fundamental computer
architecture wherein the computer executes the
instructions that are stored in its memory.

	 A stored program architecture is a fundamental
computer architecture wherein the computer executes
the instructions that are stored in its memory.John W.
Mauchly, an American physicist, and J. Presper Eckert,
an American engineer, further contributed to the stored
program concept to make digital computers much more

flexible and powerful. As a result, engineers in England
built the first stored-program computer, Manchester Mark
I, in the year 1949. They were shortly followed by the
Americans who designed EDVAC in the very same year.
	 Today, a CPU chip can handle billions of instructions
per second. It executes instructions provided both the data
and instructions are valid. In case either one of them or
both are not valid, the computer stops the processing of
instructions.

1.7.1  Types of Stored Program Computers

A computer with a Von Neumann architecture stores data
and instructions in the same memory (refer Figure 1.11(a)).
There is a serial machine in which data and instructions
are selected one at a time. Data and instructions are
transferred to and from memory through a shared data bus.
Since there is a single bus to carry data and instructions,
process execution becomes slower.
	 Later Harvard University proposed a stored program
concept in which there was a separate memory to store
data and instructions (refer Figure 1.11(b)). Instructions
are selected serially from the instruction memory and
executed in the processor. When an instruction needs
data, it is selected from the data memory. Since there are
separate memories, execution becomes faster.

Processor
Main

Memory

Address Bus - carries addresses

Data Bus - carries data and instructions

Instruction
memory

Processor

Instruction address

Instructions
Data

memory

Data address

Read/Write Data

(a)

(b)

Figure 1.11  (a) Von Neumann architecture– Shared memory for instructions and data (b) Harvard architecture– Separate
memories for instructions and data

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

11Computer History, Hardware, Software, Programming Languages, and Algorithms

1.8  COMPONENTS and Functions
OF A COMPUTER SYSTEM

A computer is an electronic device which basically
performs five major operations, which are as follows:
	 1.	 accepting data or instructions (input)
	 2.	 storing data
	 3.	 processing data
	 4.	 displaying results (output) and
	 5.	 controlling and coordinating all operations inside a

computer
	 In this section, we will discuss all these functions and
see how one component of a computer interacts with
another unit to perform these operations using the block
diagram of a computer as shown in Figure 1.12.

Storage

Secondary
memory

InputData
and

instructions

Output Results

Primary
memory

(RAM and ROM)

Control unit

Arithmetic &
Logical unit

Flow of data
and instructions

Control exercised
by control unit

Figure 1.12  Block diagram of a computer

Input  This is the process of entering data and instructions
(also known as programs) into the computer system. The
data and instructions can be entered into the computer
system by using different input devices such as keyboard,
mouse, scanner, trackball, etc.

Note

Computers understand binary language which consists
of only two symbols (0s and 1s). Therefore, it is the
responsibility of the input devices to convert the input
data into binary codes.

Storage  Storage is the process of saving data and
instructions permanently in the computer so that it can be
used for processing. The computer storage space stores
not only the data and programs but also the intermediate
results and the final results of processing. A computer has
two types of storage areas:

Primary Storage  Primary storage also known as the main
memory is that storage area which is directly accessible
by the CPU at a very fast speed. It is used to store the
data and program, the intermediate results of processing
and the recently generated results. The primary storage is
very expensive and therefore limited in capacity. Another
drawback of main memory is that it is volatile in nature,
that is, as soon as the computer is switched off, the
information stored in it gets erased. Hence, it cannot be
used as a permanent storage of useful data and programs
for future use. For example, RAM (Random Access
Memory).
Secondary Storage  Also known as the secondary memory
or auxiliary memory is just the opposite of primary
memory. It basically overcomes all the drawbacks of the
primary storage. It is cheaper, non-volatile and used to
permanently store data and programs of those jobs which
are not being currently executed by the CPU. Secondary
memory supplements the limited storage capacity of the
primary memory. For example, magnetic disk you store
your data in C drive, D drive, etc. for future use.
Processing  The process of performing operations on the
data as per the instructions specified by the user (program)
is called processing. Data processing is an activity that
involves handling or manipulating data in some way to
assign meaning to it. The main aim of processing is to
transform data into information. Data and instructions are
taken from the primary memory and are transferred to the
Arithmetic and Logical Unit (ALU), a part of CPU, which
performs all sorts of calculations. When the processing
completes, the final result is transferred to the main
memory.

Output  Output is the reverse of input. It is the process of
giving the result of data processing to the outside world
(external to the computer system). The results are given
through output devices like monitor, printer, etc. Now that
the computer accepts data only in binary form and the
result of processing is also in the binary form, the result
cannot be directly given to the user. The output devices
therefore convert the results available in binary codes into
a human-readable language before displaying it to the user.

Controlling  The function of managing, coordinating, and
controlling all the components of the computer system is
handled by the control unit, a part of CPU. The control
unit decides the manner in which the instructions will be
executed and the operations will be performed.

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

12 Computer Programming

1.9  CONCEPT OF HARDWARE AND
SOFTWARE

You have a TV at home. When you purchase a TV, it
is a box like device. A TV can be used only when it is
able to display different programs. You can touch a TV
but you cannot touch a program. Same is the concept in a
computer. A computer system is made up of two parts—
hardware and software.

1.9.1 H ardware

All the physical parts that can be touched are called
hardware (refer Figure 1.13). For example, all input and
output devices, memory devices form the hardware part
of the computer.

Computer system

Computer software

System
software

Application
software

Computer
hardware

Figure 1.13  Parts of a computer system

	 If we think of computer as a living being, then the
hardware would be the body that does things like seeing
with eyes, lifting objects, and filling the lungs with air; the
software would be the intelligence that helps in interpreting
the images that come through the eyes, instructing the
arms how to lift objects, and forcing the body to fill the
lungs with air.
	 Since the computer hardware is a part of a machine, it
can only understand two basic concepts: ‘on’ and ‘off’.
The ‘on’ and ‘off’ concept is called binary. Computer
software was developed to tell the computer hardware
what to do.

1.9.2  Software

The computer hardware cannot think and make decisions
on its own. So, it cannot be used to analyse a given set of
data and find a solution on its own. The hardware needs
a software (a set of programs) to instruct what has to be
done. A program is a set of instructions that is arranged in
a sequence to guide a computer to find a solution for the
given problem. The process of writing a program is called
programming.
	 Let us now discuss the CPU and the other hardware
components of a computer system in detail.

1.10  Central Processing Unit
(CPU) : Basic Architecture

Central Processing Unit can be called the brain of the
computer system because the entire processing of data and
execution of instructions is done here. It is made up of one
or more than one microprocessors which consist of two
main parts—arithmetic and logical unit (ALU) and control
unit (CU). It also contains registers and a bus interface unit
(BIU) of shown in Figure 1.14.

Secondary
storage
devices

Cache memory

PC

IR

MAR

MBR

I/OR

Accumul-
ator and n
general-
purpose
registers

Input
and

output
devices

Main memory

Control
unit

Arithmetic
and

logic unit

Figure 1.14  Basic computer organization

Arithmetic and Logical Unit

The ALU performs all kinds of calculations, such
as arithmetic (add, subtract, multiply, divide, etc.),
comparison (less than, greater than, or equal to), and other
operations. The intermediate results of processing may
be stored in the main memory, as they might be required
again. When the processing completes, the final result
is then transferred to the main memory. Hence, the data
may move from main memory to the ALU multiple times
before the processing is over.

Control Unit

The main function of the CU is to direct and coordinate
the computer operations. It interprets the instructions
(program) and initiates action to execute them. The CU
controls the flow of data through the computer system
and directs the ALU, input/output (I/O) devices, and other
units. It is, therefore, called the central nervous system of
the computer system. In addition, the CU is responsible
for fetching, decoding, executing instructions, and storing
results.

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

13Computer History, Hardware, Software, Programming Languages, and Algorithms

Registers

A processor register is a computer memory that provides
quick access to the data currently being used for processing.
The ALU stores all temporary results and the final result in
the processor registers. As mentioned earlier, registers are
at the top of memory hierarchy and are always preferred to
speed up program execution.
	 Registers are also used to store the instructions of the
program currently being executed. There are different
types of registers, each with a specific storage function.

Accumulator and general-purpose registers  These are
frequently used to store the data brought from the main
memory and the intermediate results during program
execution. The number of general-purpose registers
present varies from processor to processor. When
program execution is complete, the result of processing is
transferred from the accumulator to the memory through
the memory buffer register (MBR).

Special-purpose registers  These include the following:

•	 The memory address register (MAR) stores the address
of the data or instruction to be fetched from the main
memory. The value stored in the MAR is copied from
the program counter.

•	 The MBR stores the data or instruction fetched from
the main memory (Figure 1.15). If an instruction is
fetched from the memory, then the contents of the MBR
are copied into the instruction register (IR). If a data
is fetched from the memory, the contents are either
transferred to the accumulator or to the I/O register. The
MBR is also used while writing contents in the main
memory. In this case, the processor first transfers the
contents to the MBR, which then writes them into the
memory.

Memory buffer register MemoryProcessor

Figure 1.15  Data to and from memory comes from and to
processor through the MBR

•	 The IR stores the instructions currently being executed.
In general, an instruction consists of two parts—
operation and address of the data on which the operation
has to be performed. When the IR is loaded with an
instruction, the address of the data is transferred to the
MAR and the operation part is given to the CU, which
interprets it and executes it.

•	 The I/O register is used to transfer data or instructions
to or from an I/O device. An input device transfers data
to the I/O register for processing. Correspondingly, any
data to be sent to the output device is written in this
register.

• � The program counter stores the address of the next
instruction to be executed.

The size of a register is usually specified by the number of
bits it can store. For example, a register can be of 8 bits, 16
bits, 32 bits, or 64 bits. Higher the register size, more the
data that can be stored in it.

Instruction cycle  To execute an instruction, a processor
normally follows a set of basic operations that are together
known as an instruction cycle (Figure 1.16). The operations
performed in an instruction cycle involve the following:

Store Fetch

DecodeExecute

Figure 1.16  Instruction cycle

Fetch  Retrieving an instruction or a data from memory.

Decode  Interpreting the instruction.

Execute  Running the corresponding commands to process
the data.

Store  Writing the results of processing into memory.
This instruction cycle is repeated continuously until the
power is turned off.

Bus Interface Unit

The BIU provides functions for transferring data between
the execution unit of the CPU and other components of
the computer system that lie outside the CPU. Every
computer system has three different types of busses to
carry information from one part to the other. These are the
data bus, control bus, and address bus (Figure 1.17).

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

14 Computer Programming

Monitor KeyboardPrinterROMRAM Disk

Address bus

Data bus

Control bus

CPU

Read/
Write

Figure 1.17  Buses with a computer system

	 The BIU puts the contents of the program counter on the
address bus. Note that the content of the program counter
is the address of the next instruction to be executed. Once
the memory receives an address from the BIU, it places
the contents at that address on the data bus, which is then
transferred to the IR of the processor through the MBR. At
this time, the contents of the program counter are modified
(e.g., incremented by 1) so that it now stores the address of
the next instruction.

1.11  Input and Output devices

An input device is used to feed data and instructions into
the computer. In the absence of an input device, a computer
would have only been a display device. Correspondingly,
any device that outputs/gives information from a computer
is called an output device. Refer to Figure 1.18 which
shows some basic I/O devices that are generally connected
with our computer system.

Monitor
Printer

CPU

Mouse

KeyboardSpeakers

Figure 1.18  Basic I/O device computer system

Input Devices

Some of the input devices that are widely used by
computer users to feed data or instruction to the computer
are discussed as follows.

Keyboard  Keyboard is the main input device which looks
very similar to the keyboards of typewriters, with some
additional keys. With a keyboard (Figure 1.19), the user
can type a document, use keystroke shortcuts, access
menus, play games, and perform numerous other tasks.

Most keyboards have between 80 and 110 keys, which
include typing keys, numeric keys, function keys, control
keys, and arrow keys.

Arrow
keys

Break key

Numeric
keys

Ctrl
keys Alt keys

Typewriter keyboard

Enter
key

Function keys

Figure 1.19  Keyboard

Source:  digital art/FreeDigitalPhotos.net

	 The typing keys include the letters of the alphabet. The
numeric keys include a set of 17 keys to speed up data
entry of numbers. When the NUM LOCK is switched On,
the user can type numbers, dot or use /, *, –, +. When the
NUM LOCK is switched Off, the numeric keys can be
used to move the cursor on the screen.
	 Function keys are used by applications and operating
systems to perform specific commands. They are placed
on the top of the keyboard in a single row. Function keys
can be programmed so that their functionality can vary
from one program to another.
	 Control keys are used to control the cursor and screen.
Four arrow keys arranged in an inverted T-type fashion
in between the typing keys and numeric keys are used
to move the cursor on the screen in small increments. In
addition to the arrow keys, there are other cursor keys (or
navigational keys) such as:
•	 Home and End to move the cursor to the beginning and

end of the current line, respectively
•	 Page Up and Page Down to see the previous page and

the next page, respectively
•	 Insert to enter a character between two existing

characters
•	 Delete to delete a character at the cursor position
	 Other common control keys on the keyboard include
Control (Ctrl), Alternate (Alt), Escape (Esc), Print Screen
key, Pause key, Windows or Start key (Microsoft Windows
logo), and a shortcut key. The shortcut key has a menu
with mouse pointer printed on it and is used to access
the options available by pressing the right mouse button.
Esc cancels the selected option and Pause key pauses a

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

15Computer History, Hardware, Software, Programming Languages, and Algorithms

command in progress. Finally, the Print Screen captures
everything on the screen as an image. The image can be
pasted into any document.

Note

Keys like Shift, Ctrl, and Alt are called modifier keys because
they are used to modify the normal function of a key. For
example, Shift + Alphabet key makes the computer to
print a capital alphabet.

Mouse  Mouse is an input device that is used in a
graphical user interface (GUI). The users can use mouse to
handle the pointer easily on the screen to perform various
functions like opening a program or file. With mouse,
the users no longer need to memorize commands, which
was earlier a necessity when working with text-based
command line environment such as MS-DOS. Mouse is
specially used to create graphics such as lines, curves, and
freehand shape on the screen. It is connected to a serial
port or USB port on the system unit.
	 The mouse has two buttons and a scroller (refer Figure
1.20). Mouse can be held in hand and easily moved without
lifting it along a hard flat surface to move the cursor to the
desired location whether up, down, left, or right. Once the
mouse is placed at the appropriate position, the user may
perform the following operations:

Scroller

Right button

Left button

Figure 1.20  Mouse

Point  Place the mouse pointer over the word or the object
on the screen by moving the mouse on the desk.

Click  Pressing either the left or the right button of the mouse
is called clicking. When you move the mouse pointer over
an icon of an application say Internet Explorer, and double
click on it, it opens that application for you.

Drag  Drag means moving an object to the desired position
by pressing the left button.

Scroll  The scroll wheel, which is placed in between the
left and the right button of the mouse, is used to vertically
scroll through long documents.

Trackball  A trackball is a pointing device which is used to
control the position of the cursor on the screen. Trackballs
are usually used in notebook and laptop computers where
it is placed on the keyboard as shown in Figure 1.21.

Figure 1.21  Trackball on keyboard

Source:  Eugene Sergeev/Shutterstock

	 The trackball is nothing but an upside–down mouse
that rotates in place within a socket. The user rolls the
ball to position the cursor at an appropriate position on
the screen and then clicks one of the buttons (identical to
mouse buttons) near the trackball either to select objects or
position the cursor for text entry.

Joystick  Joystick (refer Figure 1.22) is a cursor control
device widely used in com-
puter games and CAD/
CAM applications. A joy-
stick has one or more push-
buttons, called switches,
whose position can also be
read by the computer.
	 The lever of the joystick
moves in all directions to
control the movement of the
pointer on the computer
screen. Though a joystick is similar to a mouse, but with
the mouse, the cursor stops moving as soon as you stop
moving the mouse. However, in case of a joystick, the
pointer continues moving in the direction the joystick is
pointing. To stop the
pointer, the user must
return the joystick to its
upright position.

Stylus (Pen)  A stylus
(shown in Figure 1.23) is
a pen-shaped input device
used to enter information
or write on the touch
screen of a phone. Stylus

Figure 1.22  Joystick

Source:  Viktor Kunz/Shutterstock

Figure 1.23  Stylus
Source:  Photodisc/OUP Picture Bank

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

16 Computer Programming

is a small stick that can also be used to draw lines on a
surface as input to a computer, choose an option from a
menu, move the cursor to another location on the screen,
take notes, and create short messages. The stylus usually
slides into a slot built into the smartphone for that purpose.

Touch Screen  A touch screen shown in Figure 1.24 is a
display screen which can identify the occurrence and
position of a touch
inside the display
region. The user can
touch the screen either
by his finger or by using
a stylus. The touch
screen facilitates the
users to interact with
what is displayed on the
screen in a direct way,
rather than in an indirect
way by using a mouse or touchpad. Such touch screen
displays can be connected to computers, laptops, PDAs,
cell phones, etc.

Barcode R eader  A barcode reader (or price scanner or
point-of-sale scanner),
shown in Figure 1.25, is a
hand-held input device
used to capture and read
information stored in a
barcode. The barcode
reader merely captures
and translates the barcode
into numbers and/or
letters. To use the captured
information, it must be
connected to a computer
for further processing. These days, bar codes and readers
are widely used in the following areas:

•	 in supermarkets and retail stores as point-of-sale devices
•	 to take inventory in retail stores
•	 to check out books from a library
•	 to track manufacturing and shipping movement
•	 to sign in on a job
•	 to identify hospital patients
•	 to tabulate the results of direct mail marketing returns
•	 to tag honey bees used in research.

Figure 1.24  Touch screen
Source:  Gareth Boden/OUP Picture Bank

Figure 1.25  Barcode reader
Source:  Image courtesy of Vectorlie
at FreeDigitalPhotos.net

Scanner  A scanner (shown in Figure 1.26) is a device that
captures images, printed text, handwriting from different
sources (such as photographic prints, posters, magazines,
etc.) and converts it into a digital image for computer edit-
ing and display.

Figure 1.26  Flatbed image scanner

Source:  Mile Atanasov/Shutterstock

	 Scanner has enabled users to store text documents as
text files. Hence, the text files occupy much less storage
space and can be easily edited. These days, they are used
in the following areas:
•	 in libraries to digitize and preserve documents
•	 to process checks and credit card slips
•	 to sort letters for speeding up mail delivery.

Optical Character R ecognition (OCR) D evice  Optical
character recognition is the process of converting printed
materials into text or word processing files that can be
easily edited and stored. The steps involved in OCR
include:

•	 Scanning the text character by character
•	 Analysing the scanned image to translate the character

images into character codes (e.g., ASCII)
	 In OCR processing, the analysis of the scanned images
is done to detect light and dark areas so as to identify each
letter or numeral. When a character is recognized, it is
converted into an ASCII code.
	 OCR has facilitated users to store text documents as
text files (rather than as images, as in case of scanners).
Hence, the text files occupy much less storage space and
can be easily edited. These days, OCR is widely used in
the following areas:
•	 Digitize and preserve documents in libraries
•	 Process checks and credit card slips
•	 Sort letters for speeding up mail delivery
	 Let us take a real-world example to understand the power
of OCR. The police department usually has all the criminal
records stored in large file cabinets. Scanning millions of

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

17Computer History, Hardware, Software, Programming Languages, and Algorithms

pages to find a particular record is not only tedious and
error-prone but also an expensive process. However, if
OCR is used to convert the pages into computer-readable
text, the police can easily search through the entire
history in a few seconds. OCR technology can be easily
understood from Figure 1.27.

Advantages

•	 Printed documents can be converted into text files.
•	 Advanced OCR can recognize handwritten text and

convert it into computer-readable text files.

Disadvantages

•	 OCR cannot recognize all types of fonts.
•	 Documents that are poorly typed or have strikeover

cannot be recognized.
•	 Very old documents when passed through OCR may not

convert into an exact copy of the text file. This is because
some characters may not have been recognized properly.
In such cases, the user has to manually edit the file.

Optical Mark Recognition (OMR)  OMR is the process
of electronically extracting data from marked fields, such
as checkboxes and fill-infields, on printed forms. The
optical mark reader is fed with an OMR sheet that has
a pen or pencil mark in pre-defined positions to indicate
each selected response (like answers for multiple choice
questions in an entrance examination).
	 The OMR sheet is scanned by the optical mark
reader (Figure 1.28) to detect the presence of a mark by
measuring reflected light levels. The error rate for OMR
technology is less than 1%. For this reason, OMR is
widely used for applications in which large numbers of
hand-filled forms have to be quickly processed with great
accuracy, such as surveys, reply cards, questionnaires,
ballots, or sheets for multiple-choice questions.

MICR  MICR is used to verify the legitimacy or originality
of paper documents, especially cheques. MICR consists of

magnetic ink printed characters which can be recognized
by high speed MICR devices (refer Figure 1.29). The
printed characters provide important information (like
cheque number, bank routing number, checking account
number, and in some cases the amount of the cheque) for
processing to the receiving party.

Figure 1.28  OMR reader

`

RUPEES

Magnetic ink character recognition

DATE:PAY
TO THE

MEMO
(AUTHORIZED SIGNATURES)

ORDER OF

Figure 1.29  A check containing magnetic ink characters
printed on it

	 MICR is widely used to enhance security, speed up the
sorting of documents, and
minimize the exposure to
check fraud. Let us take a real-
world problem to understand
how MICR reduces the risk of
fraud. If a person gives a
cheque produced using a
colour photocopying machine, Figure 1.30  MICR reader

Printed
documents

OCR
technology

Computer
readable text
�les of size
2–3 KB per
page

Scans the documents and
makes a bitmap of size
50–150 KB per page

Figure 1.27  OCR technology

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

18 Computer Programming

sound (as in television). Like we have sound cards to
convert analog signals into digital data and digital data to
analog signals, we also have video cards to convert analog
signals to digital data to store it in the computer (and
vice versa). Digital camera and web camera are popular
examples of video input devices.
	 Digital camera (shown in Figure 1.32(a)) is a hand-
held and easily portable device used to capture images or
videos. The data can then be
transferred to the computer
using a cable which connects
the computer to the digital
camera. Once the images or
videos are transferred to the
computer, they can be easily
edited, printed, or
transmitted (through e-mails).
	 Like digital camera, web cameras (shown in Figure
1.32(b)) also capture videos which can be transferred via
Internet in real time. Web cameras are widely used for
videoconferencing. Webcams are also used as security
cameras as PC-connected cameras can be used to watch
for movement and sound, recording both when they
are detected. These recordings can then be saved in the
computer and used to detect theft or any other crime.

Output Devices

We can classify the output devices in two categories as
shown in Figure 1.33.

Output devices

Soft copy devices

Monitor Projector Speaker

Hard copy
devices

Printer Plotter

Figure 1.33  Classification of output devices

	 Soft copy output devices are those output devices which
produce an electronic version of an output. For example, a
file which is stored on hard disk, CD, pen drive, etc. and is
displayed on the computer screen (monitor). Features of a
soft copy output include:
•	 The output can be viewed only when the computer is

switched On.
•	 The user can easily edit the soft copy output.
•	 Soft copy cannot be used by people who do not have a

computer.
•	 Searching data in a soft copy is easy and fast.

(a) (b)

Figure 1.32  Video input
devices (a) Digital camera
(b) Web camera

(a) (b)(b)(a)

the magnetic-ink line will either not respond to magnetic
fields, or will produce an incorrect code when scanned
using a MICR reader (Figure 1.30). The MICR device
even rejects the cheques issued by an owner of the account
who has a history of writing bad cheques.

Audio Devices  Audio devices are used to either capture
or create sound. They enable computers to accept music,
speech or sound effects for recording and/or editing.
Microphones and CD players are examples of two widely
used audio input devices.
	 A microphone feeds audio input to the computer. How-
ever, the audio input must be converted into digital data
before storing it in the computer. For this, the computer
must have a sound card. The sound card is a hardware
unit that converts analog signals generated through mi-
crophones into digital data so that it can be stored in the
computer. When the user wants to hear the pre-recorded
audio input, the sound card converts the digital data into
equivalent analog signals and sends it to the speakers. This
process is depicted in Figure 1.31.

Microphone Sound card

Sound card Speakers

The user speaks into
the microphone

The sound card converts analog
signals into digital data so that it can

be stored in the computer

The sound card converts digital data stored
in the computer into analog signals and

sends it to the speakers so that users may
hear the sound

Figure 1.31  Recording and retrieving audio data

Digital Camera  A computer with a microphone and
speakers can be used to make telephone calls and do
video-conferencing over the Internet.

Video Input Devices  Video input devices are used to
capture video from the outside world into the computer.
Here, the term video means moving picture along with

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

19Computer History, Hardware, Software, Programming Languages, and Algorithms

•	 Electronic distribution of a soft copy is cheaper. It can
be done easily and quickly.

Monitor  The monitor, also known as visual display unit
(VDU), is an output device. It looks similar to a television
screen but displays information from the computer at a
much higher quality. The monitor is connected to either a
VGA or DVI port on a video card (in the mother board).
	 Monitors come in three variants—CRT, LCD, and
Plasma (refer Figure 1.34). While CRT monitors look
much like traditional televisions as they also have deep
backs, LCD monitors on the other hand are thinner
offering equivalent graphics quality. But these days LCD
monitors are replacing CRT monitors as they are cheaper
and occupies less space on the desk. Most monitors range
in size from 15¢¢ to 21¢¢ or more (where size is defined as
a diagonal measurement from one corner of the screen to
the other).

Figure 1.34  (a) CRT monitor (b) LCD monitor (c) Plasma
monitor

Projector  A projector (Figure 1.35) is a device that takes
an image from a video
source and projects it onto
a screen or other surface.
These days, projectors are
used for a wide range of
applications varying from
home theater systems for
projecting movies and
television programs onto a
screen much larger than even the biggest TV available to
organizations for projecting information and presentations
onto screens large enough for rooms filled with people to
see. Projectors also allow users to change/adjust some
features of the image like brightness, sharpness, and color
settings of the image, in the same way a standard television
would.

Speaker  With speakers, users can enjoy music, movie, or
a game and the voice will be spread through the entire
room. However, in case the user wants to enjoy loud music
without disturbing the people around him, he can use a

Figure 1.35  Projector
Source:  olegbush/Shutterstock

headphone. Headphones are small devices that fit in or on
the ear, and give nearly the same quality and power of the
sound only to the listener.
	 Users often use headphones to chat with people over
the Internet. Another device called headset allows users
to talk and listen at the same time while chatting over the
Internet. See these devices in Figure 1.36.

(a) (b) (c)

Figure 1.36  (a) Speakers (b) Headphones (c) Headset

	 Hard copy output devices are those output devices
which produce a physical form of output. For example,
the content of a file printed on a paper is a form of hard
copy output. Features of a hard copy output include:
•	 Computer is not needed to see the output.
•	 Editing the hard copy is difficult.
•	 Hard copy output can be easily distributed to people

who do not have a computer.
•	 Searching data in a hard copy is a tiring and difficult

job.
•	 Distribution of a hard copy is not only costly but also

slower.

Printer  Printer is a device that outputs text and graphics
information obtained from the computer and prints it on to
a paper. Printers can be broadly classified into two groups:
impact printers and non-impact printers. Refer Figure
1.37.

Printers

Impact printers

Dot matrix

Daisy wheel

Line

Non-impact
printers

Ink jet Laser

Figure 1.37  Classification of printers

Impact Printer  Impact printers create characters by
striking an inked ribbon against the paper. Examples of
impact printers include: dot-matrix printers, daisywheel
printers, and most types of line printer. Refer to Table 1.1
for its advantages and disadvantages.

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

20 Computer Programming

Table 1.1  Advantages and disadvantages of impact printer

Advantages Disadvantages

•	 Enables the user to
produce carbon copies

•	 Cheap

•	 Slow
•	 Poor print quality
•	 Noisy
•	 Graphics formed are of

very poor quality
•	 Prints only using the

standard font

Non-impact Printer  Non-impact printers are much quieter
than impact printers as their printing heads do not strike
the paper. They offer better print quality, faster printing
and the ability to create prints that contain sophisticated
graphics. Non-impact printers use either solid or liquid
cartridge-based ink which is either sprayed, dripped, or
electrostatically drawn onto the page. The main types of
non-impact printer are: inkjet printer, laser printer, and
thermal printer. Refer to Table 1.2 for its advantages and
disadvantages.

Table 1.2  Advantages and disadvantages of non-impact
printer

Advantages Disadvantages
•	 Good print quality •	 Expensive
•	 Noiseless •	 Ink cartridges are also

costly
•	 Good print quality of

graphics
•	 Fast
•	 Can print text in different

fonts

Dot matrix printer  A dot matrix printer (shown in
Figure 1.38) prints characters and images of all types
as a pattern of dots (hence the name). This printer has a
printhead (or hammer) that consists of pins representing
the character or image. The printhead runs back and forth,
or in an up-and-down motion on the page and prints by
striking an ink-soaked cloth ribbon against the paper,
much like the print mechanism of a typewriter.
	 From the 1970s to 1990s, dot matrix impact printers
were the most common type of printers used with PCs.
	 Several dot matrix printer manufacturers implemented
colour printing through a multi-colour ribbon. Colour was
obtained through a multi-pass composite printing process.
In each pass, the printhead struck a different section of the
ribbon (one primary colour). However, because of poor
colour quality and increased operating expense, colour
dot matrix printers could never replace their monochrome

counterparts. Moreover, the black ink section would
gradually contaminate the other three colours (RGB),
thereby changing the consistency of printouts over the life
of the ribbon. The colour dot matrix printer was therefore
suitable only for abstract illustrations and pie charts, but
not for photo-realistic reproduction.

Figure 1.38  Dot matrix printer

Source: burnel1/Shutterstock

	 The speed of dot matrix printers varies in the range of
50–500 cps (characters per second).

Advantages

•	 The dot matrix printer can produce carbon copies.
•	 It offers the lowest printing cost per page.
•	 It is widely used for bulk printing where the quality of

the print is not of much importance.
•	 It is inexpensive.
•	 When the ink is about to be exhausted, the printout

gradually fades rather than suddenly stopping partway
through a job.

•	 It can use continuous paper rather than individual sheets,
making them useful for data logging.

Disadvantages

•	 This type of printer creates a lot of noise when the pins
strike the ribbon against the paper.

•	 It can only print lower resolution graphics, with limited
quality.

•	 It is very slow.
•	 It has poor print quality.

Daisy wheel printer  Daisy wheel printers use an impact
printing technology to generate high quality output
comparable to typewriters, and are three times faster.
However, today, daisy wheel technology is found only in
some electronic typewriters.

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

21Computer History, Hardware, Software, Programming Languages, and Algorithms

	 The printhead of a daisy wheel printer is a circular
wheel, about 3 inches in diameter with arms or spokes.
The shape of the printer wheel resembles the petals of
a daisy flower, and hence its name. The characters are
embossed at the outer ends of the arms.
	 To print a character, the wheel is rotated in such a way
that the character to be printed is positioned just in front
of the printer ribbon. The spoke containing the required
character is then hit by a hammer, thereby striking the
ribbon to leave an impression on the paper placed behind
the ribbon. The movement of all these parts is controlled
by a microprocessor in the printer.
	 The key benefit of using a daisy wheel printer is that
the print quality is high, as the exact shape of the character
hits the ribbon to leave an impression on the paper.

Line printer  A line printer is a high-speed impact printer
in which one typed line is printed at a time. The speed
of a line printer usually varies from 600 to 1200 lines
per minute, or approximately 10–20 pages per minute.
Because of their high speed, line printers are widely
used in data centers and in industrial environments. Band
printer is a commonly used variant of line printers.

Band printer  A band printer (loop printer), is an impact
printer with a printing mechanism that uses a metal loop
or band to produce typed characters. The set of characters
are permanently embossed on the band, and this set cannot
be changed unless the band is replaced. The band itself
revolves around hammers that push the paper against the
ribbon, allowing the desired character to be produced on
the paper.
	 The main advantage of using a band printer is its
high speed. This type of printer can print 2000 lines per
minute, and is, therefore, perfect for high volume printing
in businesses, schools, and other organizations. Band
printers are normally attached to mainframes and used for
industrial printing.
	 However, band printers cannot be used for any graphics
printing, as the characters are predetermined and cannot
be changed unless the band is changed. Band printers were
very popular in the 1970s and 1980s; however, today, laser
printers have replaced band printers.

Note

Band printers are often confused with band printing. Band
printing is the process of sending output to a printer and is
not associated with this type of printers

Inkjet printer  Inkjet printers, shown in Figure 1.39, came
in the market in the 1980s, but it was only in the 1990s that

their prices reduced enough to bring the technology to the
high street. Inkjet printers have made rapid technological
advances in recent years. The colour inkjet printers have
succeeded in making colour printing an affordable option
even for home users.

Figure 1.39  Inkjet printer

Source: Iakov Filimonov/Shutterstock

	 The printhead of inkjet printers has several tiny nozzles,
also called jets. As the paper moves past the printhead, the
nozzles spray ink onto it, forming characters and images.
If you observe a printout that has just come out from an
inkjet printer, you will see that the dots are extremely
small (usually between 50 and 60 microns in diameter)
and are positioned very precisely, with resolutions of up to
1440 × 720 dpi. To create a coloured image, the dots can
have different colours combined together.
	 An inkjet printer can produce from 100 to several
hundred pages (depending on the nature of the hard
copy), before the ink cartridges must be replaced. There
is usually one black ink cartridge and one colour cartridge
containing ink in primary pigments (cyan, magenta, and
yellow).
	 While inkjet printers are cheaper than laser printers,
they are more expensive to maintain. The cartridges of
inkjet printers have to be changed more frequently, and the
special coated paper required to produce high quality
output is very expensive. Hence, the cost per page of inkjet
printers becomes ten times more than laser printers.
Therefore, inkjet printers are
not well suited for high
volume print jobs.

Laser Printer  A laser printer
shown in Figure 1.40 is
a non-impact printer that
works at a very high speed
and produces high-quality
text and graphics. It uses
the photocopier technology.

Figure 1.40  Laser printer
Source:  restyler/Shutterstock

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

22 Computer Programming

When a document is sent to the printer, the following steps
take place:
•	 A laser beam ‘draws’ the document on a drum (which

is coated with a photo-conductive material) using
electrical charges.

•	 After the drum is charged, it is rolled in toner (a dry
powder type of ink).

•	 The toner sticks to the charged image on the drum.
•	 The toner is transferred onto a piece of paper and fused

to the paper with heat and pressure.
•	 After the document is printed, the electrical charge is

removed from the drum and the excess toner is collected.
	 While colour laser printers are also available in the
market, users prefer only monochrome printers because a
color laser printer is up to 10 times more expensive than a
monochrome laser printer.

Plotter  A plotter is a printing device which is usually
used to print vector graphics with a high print quality. It is
widely used to draw maps, in scientific applications, and
in applications such as computer-aided design, computer-
aided-manufacturing, and computer-aided-engineering.
Architects use plotters to draw blueprints of the structures
they are working on.
	 A plotter is basically a printer that interprets commands
from a computer to make line
drawings on paper with one
or more automated pens.
Since plotters are much more
expensive than printers, they
are used only for specialized
applications. Hewlett-Pack-
ard is the leading vendor of
plotters worldwide. There are
two different types of plot-
ters—drum and flatbed (refer
Figure 1.41).

1.12  Computer Memory

Computer memory is an internal storage area in the
computer used to store data and programs either temporarily
or permanently. No processing is done in the computer
memory. A computer memory can be broadly divided
into two groups: primary (main) memory and secondary
memory. While the main memory holds instructions and
data when a program is executing, the secondary memory
holds data and programs not currently in use and provides

Figure 1.41  Plotter
Source:  Michal Vitek/Shutterstock

long-term storage. Refer to Table 1.3 to understand the
key differences between primary and secondary memory.

Table 1.3  Differences between primary and secondary
memory

Primary memory Secondary memory
It is more expensive. It is cheaper.
It is faster and more
efficient than secondary
memory.

It is slower and less efficient
than secondary memory.

Directly accessed by the
CPU.

Cannot be accessed directly
by the CPU.

It is volatile in nature. It is non-volatile in nature.
Storage capacity is limited. It has large storage capacity.
It has no moving parts. It has moving parts.
The memory is power
dependent.

The memory is power
independent.

The memory is integrated
circuit based.

The memory is magnetic or
optical based.

It consumes less power. It consumes more power.
It stores data temporarily. It stores data permanently.

1.12.1  Memory Hierarchy

In contemporary usage, memory usually refers to random-
access memory, typically DRAM (Dynamic-RAM) but
memory can also refer to other forms of data storage. In
computer terminology, the term storage refers to storage
devices that are not directly accessible by the CPU
(secondary or tertiary storage). Examples of secondary
storage include hard disk drives, optical disc drives, and
other devices that are slower than RAM but are used to
store data permanently.
	 These days, computers use different types of memory
which can be organized in a hierarchy around the CPU, as
a trade-off between performance and cost. The memory at
a higher level in the storage hierarchy has less capacity to
store data, is more expensive, and is fastest to access as
shown in Figure 1.42.

CPU Registers

CPU registers are located inside the processor and are
therefore directly accessed by the CPU. Registers are the
fastest of all forms of computer data storage.

Cache Memory

Cache memory is an intermediate form of storage
between registers and the primary memory. It is used to
store instructions and data that are repeatedly required to
execute programs thereby improving the overall system

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

23Computer History, Hardware, Software, Programming Languages, and Algorithms

speed and increase the performance of the computer.
Keeping frequently accessed data and instructions in the
cache avoids accessing the slower primary memory.

Working of the Cache Memory  When a program is being
executed and the CPU wants to read data or instructions,
then the following steps will be performed:

More costly

Less costly

Less access time

More access time

Smaller in size

Bigger in size

Less capacity

More capacity

Stores data till the
power is ON

Stores data even when
the power is not ON

CPU registers

Cache

Primary memory

Secondary memory

Magnetic tape

System’s memory Online Offline

Figure 1.42  Memory hierarchy

	 CPU first checks whether the data or instruction is
available in cache memory. If it is not present, the CPU
reads the data or instructions from the main memory into
the processor registers. The CPU also copies it into the
cache memory. When the same piece of data/instruction is
needed, the CPU reads it from the cache memory instead
of the main memory.

1.12.2  Primary Memory

Primary memory (or main memory or internal memory) can
be directly accessed by the CPU. The CPU continuously
reads instructions stored in the primary memory and
executes them. Any data that has to be operated by the
CPU is also stored there. There are two types of primary
memory: RAM and

ROM, which are discussed as follows.

Random Access Memory (RAM)

RAM is a volatile (stores data only when the power is
On) storage area within the computer typically used to
store data temporarily so that it can be accessed by the
CPU. The information stored in RAM is loaded from the
computer’s hard disk, and includes data related to the
operating system and applications that are currently being
executed by the processor.
	 RAM is considered random access because any memory
cell can be directly accessed if its address is known. When
the RAM gets full, the computer system operates at a slow
speed. When multiple applications are being executed
simultaneously and the RAM gets fully occupied by
the application’s data, it is searched to identify memory
portions that have not been utilized. The contents of those
locations are then copied onto the hard drive. This action
frees up RAM space and enables the system to load other
pieces of required data.
	 These days, the applications’ and operating system’s
demand for system RAM has drastically increased. For
example, in the year 2000, a personal computer (PC) had
only 128 MB of RAM, but today PCs have 1–2 GB of RAM
installed, and may include graphics cards with their own
additional 512 MB or more of RAM. As discussed earlier,
there are two types of RAM—static RAM (SRAM) and
dynamic RAM (DRAM).

Static RAM  This is a type of RAM that holds data without
an external refresh as long as it is powered. This is in
striking contrast with the DRAM which must be refreshed
multiple times in a second to hold its data contents. SRAM
is made of D flip-flops in which the memory cells flip-flop
between 0 and 1 without the use of capacitors. Therefore,
there is no need for an external refresh process to be
carried out.
	 The limitation of SRAM is that it occupies more space
and is more expensive than DRAM. While each transistor
on a DRAM chip can store one bit of information, the
SRAM chip, on the other hand, requires four to six
transistors to store a bit. This means that a DRAM chip
can hold at least four times as much data as an SRAM
chip of the same size, thereby making SRAM much more
expensive.
	 However, SRAM is faster, more reliable than DRAM,
and is often used as cache memory. SRAM chips are
also used in cars, household appliances, and handheld
electronic devices.

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

24 Computer Programming

Dynamic RAM  This is the most common type of memory
used in personal computers, workstations, and servers
today. A DRAM chip contains millions of tiny memory
cells. Each cell is made up of a transistor and a capacitor,
and can contain 1 bit of information—0 or 1. To store
a bit of information in a DRAM chip, a tiny amount of
power is put into the cell to charge the capacitor. Hence,
while reading a bit, the transistor checks for a charge in
the capacitor. If a charge is present, then the reading is 1;
if not, the reading is 0.
	 However, the problem with DRAM is that the capacitor
leaks energy very quickly and can hold the charge for
only a fraction of a second. Therefore, a refresh process
is required to maintain the charge in the capacitor so that
it can retain the information. This refreshing process is
carried out multiple times in a second and requires that all
cells be accessed, even if the information is not needed.
	 However, the advantage of DRAM over SRAM is that
it is cheap, can hold more data per chip, and generates less
heat than SRAM. DRAM is widely used to build the main
memory. The following are the different types of DRAM:

Synchronous DRAM (SDRAM)  SDRAM synchronizes
itself with the clock speed of the microprocessor to enable
faster access to memory.

Enhanced SDRAM (ESDRAM)  This version of SDRAM,
though not widely used, includes a small SRAM cache to
reduce delays in data access and speed up operations.

Double data rate SDRAM (DDR)  DDR allows data
transfers on both the rising and falling edges of the clock
cycle, which doubles the data throughput. DDR SDRAM
chips are available in capacities of 128 MB to 1 GB.
Although DDR memory is very common, the technology
is becoming outdated and is being replaced by DDR2.

DDR2  These chips are the next generation of DDR SDRAM
memory. It can hold 256 MB to 2 GB of memory and can
operate at higher bus speeds. Although DDR2 has twice
the latency (data access delays) of DDR, it delivers data at
twice the speed, thereby performing at the same level.

Rambus DRAM (RDRAM)  It is a proprietary, protocol-
based, high-speed memory technology developed by
Rambus Inc. RDRAM can operate at extremely high
frequencies as compared to other types of DRAMs.

Synchronous link dynamic RAM (SLDRAM)  This version
of SDRAM, not used widely, was basically designed as a
royalty-free, open-industry standard design alternative to
RDRAM.

Read Only Memory (ROM)

ROM refers to computer memory chips containing
permanent data. Unlike RAM, ROM is non-volatile,
that is, the data is retained in it even when the computer
is turned Off. Refer Table 1.4 to understand the key
differences between RAM and ROM.

Table 1.4  Differences between RAM and ROM

RAM ROM

Data can be read as well as
written.

Data can only be read.

Data is stored temporarily. Data is stored permanently.

Data is stored while the
computer is being used by
users to hold their data.

Data is stored during the
time of fabrication.

It is required while
computer is being used
by users to run their
applications.

It is required for starting
the computer, and storing
important programs.

	 Most computers contain a small amount of ROM that
stores critical programs which are used to start the computer
when it is turned On. Originally, ROM was actually read-
only. So, in order to update the programs stored in ROM,
the ROM chip had to be removed and physically replaced
by the ROM chip that has a new version of the program.
However, today ROM chips are not literally read only,
as updates to the ROM chip are possible. The process
of updating a ROM chip is a bit slower as memory must
be erased in large portions before it can be re-written.
Rewritable ROM chips include PROMs, EPROMs, and
EEPROMs.
•	 Programmable read-only memory (PROM) also called

one-time programmable ROM can be written to or
programmed using a special device called a PROM
programmer. The working of a PROM is similar to that
of a CD-ROM recorder which enables the users to write
programs just once but the recorded data can be read
multiple times. Programming a PROM is also called
burning.

•	 Erasable programmable read-only memory (EPROM)
is a type of ROM that can be erased and re-programmed.
The EPROM can be erased by exposing the chip to
strong ultraviolet light typically for 10 minutes or
longer and then rewritten with a process that again
needs higher than usual voltage applied.

•	 Electrically erasable programmable read-only memory
(EEPROM) allows its entire or selected contents to
be electrically erased, then rewritten electrically. The
process of writing an EEPROM is also known as
flashing.

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

25Computer History, Hardware, Software, Programming Languages, and Algorithms

1.12.3  Secondary Storage Devices

Secondary storage (also known as external memory or
auxiliary storage) differs from main memory in that it is
not directly accessible by the CPU. The secondary storage
devices hold data even when the computer is switched off.
An example of such a device is the hard disk.
	 The computer usually uses its input/output channels to
access data from the secondary storage devices to transfer
the data to an intermediate area in the main memory.
Secondary storage devices are non-volatile in nature,
cheaper than the primary memory, and thus can be used
to store huge amounts of data. While the CPU can read
the data stored in the main memory in nanoseconds, the
data from the secondary storage devices can be accessed
in milliseconds.
	 The secondary storage devices are basically formatted
according to a file system that organizes the data into files
and directories. The file system also provides additional
information to describe the owner of a certain file, the
access time, the access permissions, and other information.
	 Some of the secondary storage devices such as magnetic
tape, hard disks, compact disks, USB flash drive, memory
card, and blue-ray disc are discussed in this section.

Magnetic Tape  Magnetic tape (shown in Figure 1.43) is
primarily used as an offline
storage device on which the
data is recorded and then
physically removed or dis-
connected (off the computer,
hence the name). In order to
access data from an offline
storage device, it must first be
inserted in a computer.
	 Off-line storage devices
are widely used to keep a
backup of important data.
For example, if in case of a disaster, the original data
gets destroyed, the data can be recovered from the offline
devices which are usually stored in another distant place.

Hard Disk  The hard drive is a part of the computer that
stores all the programs and files. If the drive is damaged
for some reason, all the data stored on the computer is lost.
The hard disk provides relatively quick access to large
amounts of data stored on an electromagnetically charged
surface or a set of surfaces. The personal computers today
come with a hard disk that can store gigabytes of data.

Figure 1.43  Magnetic tape

	 A hard disk is basically a set of disks stacked
together like phonograph records, that has data recorded
electromagnetically in concentric circles also known as
tracks as shown in Figure 1.44.

Arm Sector
Spindle
Track

Platter

Cylinder

R/W
head

Figure 1.44  Hard disk

Compact Disk (CD)  It uses laser technology to read and
write data on the disc. A single CD (shown in Figure 1.45)
can store a large amount of data. They are easily portable
from one computer to another and are therefore used to
transfer data from one computer to another. The storage
capacity of CD-ROM varies from 650 MB to 1 GB.
Nowadays, most of the software products (like Microsoft
Office, Windows Operating System, etc.) are available on
the CDs.

Figure 1.45  CD

Source: Italianphoto/Shutterstock/OUP Picture Bank

Digital Video Disk or Digital Versatile Disc (DVD)  It is an
extremely high capacity optical disc with storage capacity
from 4.7 GB to 17 GB. DVDs are widely used to store
large databases, movies, music, complex software, etc.

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

26 Computer Programming

	 Most of the DVDs are double-sided discs as they can
store data on both the sides of the disc. Although a DVD
resembles a CD in size and shape, it stores information in
different manner. When data is recorded on a DVD, the
laser starts on the inside of the disk and moves outward.
The laser beam has a smaller wavelength and can be
focused on two different layers on the disk.

USB Flash D rive (Pen D rive)  USB flash drives (shown
in Figure 1.46) are removable, rewritable, and physically
much smaller drives weighing even less than 30 g. The
storage capacity of USB flash drives was as large as 256
GB. Such devices are a good substitute of floppy disks
and CD-ROMs as they are smaller, faster, have thousands
of times more capacity, and are more durable and reliable.
Until approximately 2005, most desktop and laptop
computers had a floppy disk drive, but nowadays floppy
disk drives have been abandoned in favour of USB ports.

Figure 1.46  USB flash drive

Source:  Coprid/Shutterstock/OUP Picture Bank

Memory Cards    A memory card (sometimes called a
flash memory card or a
storage card) is a small
device that can store a wide
range of files as shown in
Figure 1.47. They are easily
portable from one place to
another. A user can take a
memory card, insert it into a
computer, store files (such
as text documents, pictures,
audio files, and video files),
and then remove the card and bring it to another computer
where it can be again inserted to copy the files on the local
disk of that computer.
	 Memory cards are smaller, require less power, have
higher storage capacity, are less prone to mechanical
failures, allow immediate access to data and are portable
among a greater number of devices. They are being
widely used in the production of an increasing number
of small, lightweight, and low-power devices. Although
memory cards are far better than hard disks, they could not

Figure 1.47  Memory card

Source:  IlyaAkinshin/ Shutterstock/
OUP Picture Bank

replace them because memory cards are quite expensive.
For example, Compact Flash with a capacity of 192 MB
typically costs more than a hard drive with a capacity of 40
GB.

Blue-ray D isc (BD)  Blu-ray disk is a new optical disk
developed by the Blu-ray Disc Association (BDA), which
includes leading companies such as Apple, Dell, Hitachi,
HP, JVC, LG, Mitsubishi, Panasonic, Pioneer, Philips,
Samsung, Sharp, Sony, TDK, and Thomson. The format
of a Blu-ray disk was specifi cally developed to bring
forward a recordable, rewritable disk that can store large
amount of data and display a high-defi nition video (HD).
	 Although a Blu-ray disk has the same size as that of a
CD or a DVD, it can store much more data than a DVD.
	 A single-sided Blu-ray disk can store 25 GB of data and
a dual-layer disk can store 50 GB of data. While CDs and
DVDs use a red laser to read and write data, the Blu-ray
disk on the other hand uses a blue-violet laser, hence the
name Blu-ray. The advantage of using a blue laser with a
shorter wavelength of 405 nm than the red laser (650 nm)
is that it allows it to focus the laser spot with even greater
precision. This means that data can be packed more tightly
and therefore stored in less space. Moreover, the storage
capacity of this disk is enough to store a continuous backup
copy of most people’s hard drives on a single disk.
	 A Blu-ray disk player is backwards compatible with
CDs and DVDs and can therefore play a CD or a DVD
despite the differences between the types of laser used.
However, the Blu-ray disks will not play on CD and DVD
players, because those players lack the blue-violet laser
required to read the disks.
	 Blu-ray disks will soon replace the use of CDs and
DVDs. They have already been supported by about 200
of the world’s leading consumer electronics, personal
computer, recording media, video game, and music
companies. Besides this, they are also being supported
by Hollywood studios and a number of smaller studios
that have already announced that they will release new
films on Blu-ray disks. Blu-ray disks are also being used
in physical distribution of video games for PlayStation 3,
WiiU, PlayStation 4, and Xbox One. Sony’s Playstation 3
has a Blu-ray drive installed in it.

Note

Very soon a Blu-ray disc having 20 layers and storing 500
GB of data will be available in the market.

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

27Computer History, Hardware, Software, Programming Languages, and Algorithms

External Hard Disks  As the name suggests, an external
hard disk (see Figure 1.48) is a drive that is located outside
the computer case in its
own enclosure. It is used
in addition to internal
hard drives to store data.
It has become quite
popular because of its
portability and high-
storage capacity. It is
connected to the computer system with a high-speed
interface cable, usually with plug-and-play interfaces such
as USB or FireWire, and may also contain a fan for
cooling. While with USB connections, data can move at a
rate of 12 to 480 Mbps (megabits per second), FireWire on
the other hand can transfer data at speeds ranging from
400 to 800 Mbps. The external hard drive can also be
connected to the computer wirelessly.
	 External drives allow users to save sensitive,
confidential, or otherwise important data on them and kept
at separate (away from the computer) secure locations.
As external hard drives are lightweight portable devices,
they can be easily carried anywhere and also be stored
in a safe, secure location to protect the data from theft
or disaster. Moreover, some external devices come with
security features like fingerprint recognition to prohibit
other people from gaining access to the stored data.
	 External hard drives have high storage capacities.
External hard disks with a storage capacity of 2TB are
very common these days (1 TB = 1000 GB). Therefore,
they are often used to back up numerous computer files or
serve as a network drive to store shared content. They are
extensively used by people who do audio/video editing.
These media files require high-quality settings, and
therefore consume a large amount of disk space.

1.13  Classification of Computer
Software

Computer software is written by programmers using a
programming language. The programmer writes a set
of instructions (program) using a specific programming
language. Such programs are known as the source code.
Another computer program called a compiler is then used
on the source code, to transform the instructions into a
language that the computer can understand. The result is
an executable computer program, which is another name
for software.

Figure 1.48  External hard disc

	 Examples of computer software include the following:
•	 Driver software, which allows a computer to interact

with hardware devices such as printers, scanners, and
video cards.

•	 Educational software, which includes programs and
games that help in teaching and providing drills to help
memorize facts. Educational software can be used in
diverse areas, from teaching computer-related activities
like typing to subjects like chemistry.

•	 Media players and media development software, which
are specifically designed to play and/or edit digital
media files such as music and videos.

•	 Productivity software, which is an older term used to
denote any program that allows the user to be more
productive in a business sense. Examples of such
software include word processors, database management
utilities, and presentation software.

•	 Operating systems software, which helps in coordinating
system resources and allows execution of other
programs. Some examples of operating systems are
Windows, Mac OS X, and Linux.

•	 Computer games, which are widely used as a form of
entertainment software that has many genres.

	 Computer software can be broadly classified into two
groups, namely application software and system software.
•	 Application software is designed for users to solve

a particular problem. It is generally what we think of
when we refer to a computer program. Examples of
application software include spreadsheets, database
systems, desktop publishing software, program
development software, games, and web browsers.
Simply put, application software represents programs
that allow users to do something besides merely run the
hardware.

•	 On the contrary, system software, provides a general
programming environment in which programmers
can create specific applications to suit their needs.
This environment provides new functions that are not
available at the hardware level and performs tasks
related to executing the application program. System
software represents programs that allow the hardware to
run properly. It acts as an interface between the hardware
of the computer and the application software that users
need to run on the computer. Figure 1.49 illustrates the
relationship between application software and system
software.

	 Table 1.5 lists the differences between system and
application softwares.

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

28 Computer Programming

Application programs
For example, games, spreadsheets, word

processor, database systems, web browsers

User 1 User 2 User n

System software
For example, operating system

Computer hardware
For example, printer, mouse, scanner, keyboard,

CPU, hard disk

Figure 1.49  Relationship among hardware, system
software, and application software

Table 1.5   �Differences between system and application
software

System software Application software

It is a collection of
programs that enable
users to interact with
hardware components
efficiently.

It is a collection of programs
written for a specific
application, such as a library
system, inventory control
system, and so on.

It controls and manages
the hardware.

It uses the services provided
by the system software
to interact with hardware
components.

It is machine-dependent. It is machine independent.

The programmer
must understand the
architecture of the
machine and hardware
details to write system
software.

In most cases, the
programmer ignores the
architecture of the machine
and hardware details to write
application software.

It interacts with the
hardware directly.

It interacts with the
hardware indirectly through
system calls provided by
system software.

Writing system software is
a complicated task.

Writing application programs
is relatively easy.

Examples include
compilers and operating
systems.

Examples include Microsoft
Word and Microsoft Paint.

1.13.1  System Software

System software is computer software designed to operate
computer hardware and to provide and maintain a platform
for running application software. Some of the most widely
used system software are discussed in this section.

Computer BIOS and Device Drivers

Basic Input/Output System (BIOS) and device drivers
provide basic functionality to operate and control the
hardware connected to or built into the computer.
	 BIOS is built into the computer and is the first code run
by the computer when it is switched on. The key role of
BIOS is to load and start the operating system (OS).
	 When the computer starts, the first function that BIOS
performs is to initialize and identify system devices such
as the video display card, keyboard, mouse, hard disk,
CD/DVD drive, and other hardware. In other words, the
code in the BIOS chip runs a series of tests called POST,
which stands for power on self test, to ensure that the
system devices are working correctly.
	 The BIOS chip then locates the software held on
a peripheral device such as a hard disk or a CD, and
loads and executes that software, giving it control of the
computer. This process is known as booting.
	 BIOS is stored on a ROM chip built into the system. It
also has a user interface similar to a menu, which can be
accessed by pressing a certain key on the keyboard when
the PC starts. A BIOS screen is shown in Figure 1.50.

Figure 1.50  The BIOS menu

	 The BIOS menu enables the user to configure hardware,
set the system clock, enable or disable system components,
and, most importantly, select the devices which are eligible

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

29Computer History, Hardware, Software, Programming Languages, and Algorithms

to be a potential boot device and set various password
prompts.
	 In summary, BIOS performs the following functions:
•	 Initializes system hardware
•	 Initializes system registers
•	 Initializes power management system
•	 Tests RAM
•	 Tests all the serial and parallel ports
•	 Initializes CD/DVD disk drive and hard disk controllers
•	 Displays system summary information

Operating System

The primary goal of an operating system is to make
the computer system (or any other device in which it is
installed, such as a cell phone) convenient and efficient
to use. The operating system offers generic services to
support user applications.
	 From the point of view of users, the primary
consideration is always convenience. Users should
find it easy to launch an application and work on it. For
example, we use icons, which give us an idea about which
application they launch. We have different icons for
launching a web browser, an e-mail application, or even
a document preparation application. In other words, it is
the human–computer interface that helps to identify and
launch an application. The interface hides a lot of details
of the instructions that performs all these tasks.
	 Similarly, if we examine the programs that help us in
using input devices such as the keyboard/mouse, all the
complex details of the character-reading program are
hidden from the user. We, as users, simply press buttons to
perform the input operation regardless of the complexity
of the details involved. The details are handled by the
operating system.
	 An operating system ensures that system resources
(such as CPU, memory, I/O devices, and so on) are utilized
efficiently. For example, there may be many service
requests on a web server, and each user request needs to be
serviced. Similarly, there may be many programs residing
in the main memory. The system needs to determine which
programs are active and which need to wait for some
I/O operation, since the programs that need to wait can
be suspended temporarily from engaging the processor.
Hence, it is important for an operating system to have a
control policy and algorithm to allocate system resources.

Utility Software

Utility software is used to analyse, configure, optimize,
and maintain the computer system. Utility programs
may be requested by application programs during their
execution for multiple purposes. Some examples of utility
programs include the following:
•	 Disk defragmenters can be used to detect computer files

whose contents are broken across several locations on
the hard disk, and the fragments can be moved to one
location in order to increase efficiency.

•	 Disk checkers can be used to scan the contents of a hard
disk to find files or areas that are either corrupt in some
way, or were not correctly saved, and eliminate/repair them
in order to make the hard drive operate more efficiently.

•	 Disk cleaners can be used to locate files that are
either not required for computer operation, or take up
considerable amounts of space. Disk cleaners help the
user to decide what to delete when their hard disk is full.

•	 Disk space analysers are used for visualizing disk space
usage by obtaining the size of all folders (including
subfolders) and files in a folder or drive.

•	 Disk partitions are used to divide an individual drive into
multiple logical drives, each with its own file system.
Each partition is then treated as an individual drive.

•	 Backup utilities can be used to make a copy of all
information stored on a disk. In case a disk failure
occurs, backup utilities can be used to restore the entire
disk. Even if a file gets deleted accidentally, the backup
utility can be used to restore the deleted file.

•	 Disk compression can be used to enhance the capacity
of the disk by compressing/uncompressing the contents
of a disk.

•	 File managers can be used to provide a convenient
method of performing routine data management tasks,
such as deleting, renaming, cataloguing, moving,
copying, merging, generating, and modifying data sets.

•	 System profilers can be used to provide detailed
information about the software installed and hardware
attached to the computer.

•	 Anti-virus utilities are used to scan the computer for
viruses.

•	 Data compression utilities are used to compress files to
a smaller size.

•	 Cryptographic utilities are used to encrypt and decrypt
files.

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

30 Computer Programming

•	 Launcher applications are used as a convenient access
point for application software.

•	 Registry cleaners are used to clean and optimize the
Windows registry by deleting old registry keys that are
no longer in use.

•	 Network utilities are used to analyse the computer’s
network connectivity, configure network settings, and
check data transfer or log events.

•	 Command line interface (CLI) and graphical user
interface (GUI) are used to interface the operating
system with other software.

Translators

In this section we shall discuss the functions of translators
which are computer programs used to translate a code
written in one programming language to a code in another
language that the computer understands.

Compiler

A compiler is a special type of program that transforms
the source code written in a programming language (the
source language) into machine language, which uses only
two digits—0 and 1 (the target language). The resultant
code in 0s and 1s is known as the object code. The object
code is used to create an executable program.
	 Therefore, a compiler (Figure 1.51) is used to translate
the source code from a high-level programming language
to a lower-level language (e.g., assembly language or
machine code). There is a one-to-one correspondence
between the high-level language code and machine
language code generated by the compiler.

Object
program

Source
program

Compiler Output

Error list
Data

If no errors

If
errors

Execute

Figure 1.51  Compiler

If the source code contains errors, then the compiler will not
be able to do its intended task. Errors that limit the compiler
in understanding a program are called syntax errors.
Examples of syntax errors are spelling mistakes, typing
mistakes, illegal characters, and use of undefined variables.
The other type of error is the logical error, which occurs
when the program does not function accurately. Logical
errors are much harder to locate and correct than syntax
errors. Whenever errors are detected in the source code, the
compiler generates a list of error messages indicating the
type of error and the line in which the error has occurred.
The programmer makes use of this error list to correct the
source code.
	 The work of a compiler is only to translate the human-
readable source code into a computer-executable machine
code. It can locate syntax errors in the program (if any) but
cannot fix it. Unless the syntactical error is rectified, the
source code cannot be converted into the object code.
	 Each high-level language has a separate compiler. A
compiler can translate a program in one particular high-
level language into machine language. For a program
written in some other programming language, a compiler
for that specific language is needed.

Interpreter

Similar to the compiler, the interpreter also executes
instructions written in a high-level language. Basically, a
program written in a high-level language can be executed
in any of the two ways— by compiling the program or by
passing the program through an interpreter.
	 The compiler translates instructions written in a
high-level programming language directly into machine
language; the interpreter, on the other hand, translates
the instructions into an intermediate form, which it then
executes. The interpreter takes one statement of high-level
code, translates it into the machine level code, executes it,
and then takes the next statement and repeats the process
until the entire program is translated.

HOW COMPILERS WORK

Compilers, like other programs, reside on the secondary storage. To translate a source code into its equivalent machine
language code, the computer first loads the compiler and the source program from the secondary memory into the main
memory. It then executes the compiler along with the source program as its input. The output of this execution is the
object file, which is also stored in the secondary storage. Whenever the program is to be executed, the computer loads
the object file into the memory and executes it. Thus, it is not necessary to compile the program every time it needs to be
executed. Compilation will be needed again only if the source code is modified.

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

31Computer History, Hardware, Software, Programming Languages, and Algorithms

Note

An interpreter not only translates the code into machine
language but also executes it.

Figure 1.52 shows an interpreter that takes a source program
as its input and gives the output. This is in contrast with
the compiler, which produces an object file as the output
of the compilation process. Usually, a compiled program
executes faster than an interpreted program. Moreover,
since there is no object file saved for future use, users will
have to reinterpret the entire program each time they want
to execute the code.

Source
file

Interpreter
software

Output

Computer

Figure 1.52  Interpreter

	 Overall, compilers and interpreters both achieve similar
purposes, but they are inherently different as to how they
achieve that purpose. The differences between compilers
and interpreters are given in Table 1.6.

Table 1.6  Differences between compilers and interpreters

Compiler Interpreter

•  �It translates the entire
program in one go.

•  �It generates error(s) after
translating the entire
program.

•  �Execution of code is faster.
•  An object file is generated.
•  �Code need not be

recompiled every time it is
executed.

•  It merely translates the
code.
•  �It requires more memory

space (to save the object
file).

•  �It interprets and
executes one statement
at a time.

•  �It stops translation after
getting the first error.

•  �Execution of code is
slower as every time
reinterpretation of
statements has to be
done.

•  �No object file is
generated.

•  �Code has to be
reinterpreted every
time it is executed.

•  �It translates as well as
executes the code.

•  �It requires less memory
space (no object file).

Assembler  Since computers can execute only codes
written in machine language, a special program, called
the assembler, is required to convert the code written in

assembly language into an equivalent code in machine
language, which contains only 0s and 1s. The working of
an assembler is shown in Figure 1.53; it can be seen that the
assembler takes an assembly language program as input
and gives a code in machine language (also called object
program) as output. There is a one-to-one correspondence
between the assembly language code and the machine
language code. However, if there is an error, the assembler
gives a list of errors. The object file is created only when
the assembly language code is free from errors. The object
file can be executed as and when required.

Assembler
source file

Assembler

Error
listing

Object file

Figure 1.53  Assembler

Note

An assembler only translates an assembly program into
machine language, the result of which is an object file that
can be executed. However, the assembler itself does not
execute the object file.

Linker

Software development in the real world usually follows a
modular approach. In this approach, a program is divided
into various (smaller) modules as it is easy to code, edit,
debug, test, document, and maintain them. Moreover,
a module written for one program can also be used for
another program. When a module is compiled, an object
file of that module is generated.
	 Once the modules are coded and tested, the object files
of all the modules are combined together to form the final
executable file. Therefore, a linker, also called a link editor
or binder, is a program that combines the object modules
to form an executable program (see Figure 1.54). Usually,
the compiler automatically invokes the linker as the last
step in compiling a program.

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

32 Computer Programming

LinkerRuntime
library

Executable
program

Source
file

Object
file

Source
file

Object
file

Source
file

Object
file

Source
file

Object
file

Figure 1.54  Linker

Loader

A loader is a special type of program that is part of an
operating system and which copies programs from a
storage device to the main memory, where they can be
executed. Most loaders are transparent to the users.

Debugger

Debugging is a necessary step in software development
process. Since it is very common for real world applications
to have thousands of lines of code, the possibility of having
errors in them cannot be ruled out. Therefore, identifying
bugs (errors) and removing them as early as possible is
very important.
	 Debugging tools, commonly known as debuggers,
are used to identify coding errors at different stages of
software (or program) development. These days, many
programming language packages have a facility for
checking the code for errors while it is being written.
	 A debugger is a program that runs other programs
allowing users to exercise some degree of control over
their programs so that they can examine them when things
go wrong. A debugger helps the programmer to discover
the following things:
•	 Which statement or expression was being executed

when the error occurred?
•	 If an error occurred during the execution of a function,

what parameters were passed to it while it was called?
•	 What is the value of variables at different lines in the

program?
•	 What is the result of evaluating an expression?

•	 What is the sequence of statements actually executed in
a program?

	 When a program crashes, debuggers show the position
of the error in the program. Many debuggers allow
programmers to run programs in a step-by-step mode.
They also allow them to stop on specific points at which
they can examine the value of certain variables.

1.13.2  Application Software

Application software is a type of computer software that
employs the capabilities of a computer directly to perform a
user-defined task. This is in contrast with system software,
which is involved in integrating a computer’s capabilities,
but does not directly apply them in the performance of
tasks that benefit the user.
	 To understand application software better, consider an
analogy where hardware would depict the relationship of
an electric light bulb (an application) to an electric power
generation plant (a system).
	 The power plant merely generates electricity, which is
not by itself of any real use until harnessed through an
application such as the electric light, which performs a
service that actually benefits the user.
	 Typical examples of software applications are word
processors, spreadsheets, media players, education
software, CAD, CAM, data communication software,
statistical and operational research software, etc. Multiple
applications bundled together as a package are sometimes
referred to as an application suite.

Examples of Application Software  These days, we have
a number of application software packages available in
the market for a wide range of applications. The range of
these applications vary from simple applications such as
word processing, inventory management to complex and
scientific applications such as weather forecasting, oil and
natural gas exploration. In this section we will discuss
some popular application software.

Word Processing Software (MS Word)  A word processor
is a software package that enables its users to create, edit,
print, and save documents for future retrieval and reference
as shown in Figure 1.55. The key advantage of using a
word processor is that it allows the users to make changes
to a document without retyping the entire document.
Microsoft Word is the world’s leading word processing
application. Users can create a variety of documents such
as letters, memos, résumés, forms, or any other document
that can be typed and printed.

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

33Computer History, Hardware, Software, Programming Languages, and Algorithms

Figure 1.55  MS Word

Spreadsheet Program (Microsoft E xcel)  A spreadsheet
software is the one in which data is stored into spreadsheet
rows and columns, or ‘cells’ which can be formatted in
various fonts or colours. Microsoft Excel is an example
of a spreadsheet software (as shown in Figure 1.56) that is
basically used to store, organize, and manipulate data. The
stored data can also be converted into graphs for analysis.

Figure 1.56  MS Excel

	 Microsoft Excel includes a number of simple as well
as complex formulas and functions to calculate variables
in the data. Excel is therefore widely used in finance to
automatically calculate variables such as profit, loss, or
expenditure.

Presentation Software (Microsoft PowerPoint)  Microsoft
PowerPoint (as shown in Figure 1.57) is used to create
multimedia presentations and slide shows. When designing
presentations on Microsoft PowerPoint, users can add
effects on slide transitions, add sound clips, images,

animations, or video clips to make the presentation even
more interesting for the target audience.

Figure 1.57  MS PowerPoint

	 In addition to slide shows, PowerPoint also offers
printing options to facilitate the users to provide handouts
and outlines for the audience as well as note pages for the
speaker to refer to during the presentation.
	 All in all PowerPoint is a one-stop-shop for creating
beautiful presentations for business and classrooms. It is
also an effective tool for training purposes.

Database Software (Microsoft Access)  Microsoft Access
(as shown in Figure 1.58) is a database application which
is used to store data for reporting, and analysis.

Figure 1.58  MS Access

	 Microsoft Access is equipped with query interface,
forms to input and display data, and reports for printing. In
addition to this, Access has features to automate repetitive
tasks.
	 Microsoft Access is particularly appropriate for
meeting end-user database needs and for rapid application
development.

Graphics Software  Graphics software or image editing
software is a program that allows users to create and edit

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

34 Computer Programming

digital images and illustrations. Examples of such software
include Adobe Photoshop Illustrator, Paint Shop Pro, MS
Paint, etc.
	 Most graphics programs have the ability to import and
export one or more graphics file formats. Some of the
graphics applications are given below:

Animation Software  It simulates a movement by
displaying a sequence of images in a fraction of a second.

CAD Software  It is used by architects and engineers to
create architectural drawings, product designs, landscaping
plans, and engineering drawings. CAD software enables
the designers to work much faster. The drawings that were
created in several days can now be drawn in a few hours.

Desktop Publishing Software  It facilitates users with
a full set of word-processing features along with a fine
control over placement of text and graphics. Using such
an application, the users can easily create newsletters,
advertisements, books, and other types of documents.

Multimedia Software  Multimedia is a comprehensive
term which means different types of media. It includes a
combination of text, audio, still images, animation, video,
and interactivity content forms.
	 Multimedia is used for creating exciting advertisements
to grab and keep attention of the target audience. It is
also used in business to design training programs. In
the entertainment industry, multimedia is used to create
special effects in movies and animations. It is also used in
computer games and some video games that are a popular
pastime.
	 Edutainment which combines education with
multimedia entertainment is now emerging as a trend in
school as well as higher education. This has made learning
theories much simpler than ever before. Moreover, visually
impaired or people with other kinds of disabilities can
pursue their careers by using training programs specially
designed for them.
	 Multimedia is used by engineers and researchers
for modeling and simulation. For example, a scientist
can look at a molecular model of a particular substance
and manipulate it to arrive at a new substance. Even in
medicines, doctors are now trained by looking at a virtual
surgery.
	 Ability Media allows those with disabilities to gain
qualifications in the multimedia field so they can pursue
careers that give them access to a wide array of powerful
communication forms.

1.14 RE PRESENTATION OF DATA: Bits
and Bytes

We have seen that computers store and process data to
retrieve information. Here,
•	 Data refers to anything that has some interest to the

user, and
•	 Information is the result of data processing
	 The term data representation refers to the technique
used to represent data internally stored in the computer.
	 These days, computers store massive amounts of a
variety of data such as numbers, text, images, audio and
video (as shown in Figure 1.59). Though all these types of
data belong to a different class but internally they all are
stored in the same simple format of 1s and 0s.
	 Computers are electronic machines which operate using
binary logic. These devices use two different values to
represent the two voltage levels (0 V for logic 0 and +5 V
for logic 1). The two values 0 and 1, therefore, correspond
to the two digits used by the binary number system.
	 The binary number system works like the decimal
number system with the following exceptions:
•	 While the decimal number system uses a base 10, the

binary number system on the other hand uses base 2.
•	 The decimal number system uses digits from 0 to 9 but

the binary number system uses only two digits 0 and
1. Any other digit is considered to be invalid in this
number system.

Types of data

Data represented as 0s and 1s in computer

Numbers Text Audio Video Image

Figure 1.59  Different types of data

	 Some important terms in binary number system include
(as shown in Table 1.7):

Table 1.7  Important terms in binary number system

Term Size (bits) Example

Bit 1 0

Nibble 4 1010

Byte 8 0101 1100

Word 16 0101 1100 0101 1100

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

35Computer History, Hardware, Software, Programming Languages, and Algorithms

Bit  Bit is a short form of binary digit. It is the smallest
possible unit of data. In computerized data a bit can either
be 0 or 1.

Nibble  Nibble is a group of four binary digits.

Byte  Byte is a group of eight bits. A nibble is a half byte.
Bits 0 through 3 are called the low order nibble, and bits
4 through 7 form the high order nibble as shown in Figure
1.60.

Lower nibble

7 6 5 4 3 2 1 0

Most significant
Bit (MSB)

Least significant
Bit (LSB)

Higher nibble

Figure 1.60  Lower and upper nibble

	 While a single bit can store two different values 20
(0 or 1), a byte comprised of 8 bits can store 28 or 256
different values.

Note

If a code has 128 different values, then it needs at least 7
bits to represent its values because 27 = 128.

	 Besides bytes, data is also specified using the units
shown in Table 1.8.

Table 1.8  Data units

Unit Abbrevia-
tion

Equal
to

Bytes Power
of 2

Byte Byte 8 Bits 1 20
bytes

Kilobyte KB 1024
Bytes

1024 210
bytes

Megabyte MB 1024
KB

1048576 220
bytes

Gigabyte GB 1024
MB

1073741824 230
bytes

Terabyte TB 1024
GB

1099511627776 240
bytes

Word  A group of two bytes is called a word. Bits 0 through
7 form the low order byte and bits 8 through 15 form the
high order byte (refer Figure 1.61). However, computers
today have redefined word as a group of 4 bytes (32 bits).
With 16 bits, the computer can represent 216 (65536)
different values.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Higher byte (8–15) Lower byte (0–7)

Figure 1.61  Lower and upper byte

Binary Representation with 2 Digits

We have seen that the number of values that can be
encoded in binary depends on the number of binary digits.
For example, if we have a single digit, we can represent
only 21= 2 values 0 or 1. If we have two digits, we can
represent 22 = 4 values—00, 01, 10 and 11. Look at Tables
1.9 and 1.10, which summarize this concept.

Table 1.9  Data values using 2 bits

Number of digits—2
Data values that can be represented = 22 = 4

0 00
1 01
2 10
3 11

Table 1.10  Data values using 3 bits

Number of digits—3
Data values that can be represented = 23 = 8

0 000

1 001

2 010

3 011

4 100

5 101

6 110

7 111

1.15  PROGRAMMING LANGUAGES

A programming language is a language specifically
designed to express computations that can be performed
by a computer. Programming languages are used to create
programs that control the behaviour of a system, to express
algorithms, or as a mode of human communication.
	 Usually, programming languages have a vocabulary
of syntax and semantics for instructing a computer to
perform specific tasks. The term programming language
refers to high-level languages such as BASIC (Beginners’
All-purpose Symbolic Instruction Code), C, C++, COBOL

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

36 Computer Programming

(COmmon Business Oriented Language), FORTRAN
(FORmula TRANslator), Ada, and Pascal, to name a few.
Each of these languages has a unique set of keywords
(words that it understands) and a special syntax for
organizing program instructions.
	 Though high-level programming languages are easy
for humans to read and understand, the computer can
understand only machine language, which consists of only
numbers. Each type of central processing unit (CPU) has
its own unique machine language.
	 In between machine languages and high-level
languages, there is another type of language known as
assembly language. Assembly languages are similar to
machine languages, but they are much easier to program
because they allow a programmer to substitute names for
numbers.
	 However, irrespective of the language that a programmer
uses, a program written using any programming language
has to be converted into machine language so that the
computer can understand it. There are two ways to do this:
compile the program or interpret the program.
	 The language chosen to write a program depends on the
following factors:
∑	 The type of computer on which the program is to be

executed

∑	 The type of program

∑	 The expertise of the programmer
	 For example, FORTRAN is a particularly good language
for processing numerical data, but it does not lend itself
very well to organizing large programs. Pascal can be used
for writing well-structured and readable programs, but it is
not as flexible as the C programming language. C++ goes
one step ahead of C by incorporating powerful object-
oriented features, but it is complex and difficult to learn.

1.16	 GENERATIONS OF PROGRAMMING
LANGUAGES

We now know that programming languages are the
primary tools for creating software. As of now, hundreds
of programming languages exist in the market, some more
used than others and each claiming to be the best. However,
in the 1940s when computers were being developed, there
was just one language—machine language.
	 The concept of generations of programming
languages (also known as levels) is closely connected
to the advances in technology. The five generations of
programming languages include machine language,

assembly language, high-level language (also known as
the third generation language or 3GL), very high-level
language (also known as the fourth generation language
or 4GL), and fifth generation language that includes
artificial intelligence.

1.16.1  First Generation: Machine Language

Machine language was used to program the first stored-
program computer systems. This is the lowest level of
programming language and is the only language that a
computer understands. All the commands and data values
are expressed using 0s and 1s, corresponding to the off and
on electrical states in a computer.
	 In the 1950s, each computer had its own native
language, and programmers had primitive systems for
combining numbers to represent instructions such as add
and subtract. Although there were similarities between
each of the machine languages, a computer could not
understand programs written in another machine language.

MACHINE LANGUAGE

000 0000A

000 0000F

000 0000B

0000

0008

0008

0008

0058

00Θ0

00A9

00CC

00E4

010D

013D

FF55 FF54 FF53

FF24 FF27

CF CF

CF

CF C1

C7D2CF

This is an example of a machine language program that will
add two numbers and find their average. It is in hexadecimal
notation instead of binary notation because that is how the
computer presented the code to the programmer. The
program was run on a VAX/VMS computer, a product of the
Digital Equipment Corporation.

	 In machine language, all instructions, memory locations,
numbers, and characters are represented in strings of 0s
and 1s. Although machine language programs are typically
displayed with the binary numbers represented in octal
(base 8) or hexadecimal (base 16) number systems, these
programs are not easy for humans to read, write, or debug.

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

37Computer History, Hardware, Software, Programming Languages, and Algorithms

	 The main advantage of machine language is that the
execution of the code is very fast and efficient since it is
directly executed by the CPU. However, on the downside,
machine language is difficult to learn and is far more
difficult to edit if errors occur. Moreover, if we want to
store some instructions in the memory at some location,
then all the instructions after the insertion point would
have to be moved down to make room in the memory
to accommodate the new instructions. In addition, the
code written in machine language is not portable, and
to transfer the code to a different computer, it needs to
be completely rewritten since the machine language
for one computer could be significantly different from
that for another computer. Architectural considerations
make portability a tough issue to resolve. Table 1.11
lists the advantages and disadvantages of machine
language.

Table 1.11  Advantages and disadvantages of machine
language

Advantages Disadvantages

• � Code can be directly
executed by the computer.

• � Execution is fast and
efficient.

• � Programs can be written
to efficiently utilize
memory.

• � Code is difficult to
write.

• � Code is difficult to
understand by other
people.

• � Code is difficult to
maintain.

• � There is more
possibility for errors to
creep in.

• � It is difficult to detect
and correct errors.

• � Code is machine
dependent and thus
non-portable.

1.16.2  Second Generation: Assembly Language

Second-generation programming languages (2GLs)
comprise the assembly languages. Assembly languages
are symbolic programming languages that use symbolic
notations to represent machine language instructions.
These languages are closely connected to machine
language and the internal architecture of the computer
system on which they are used. Since it is close to machine
language, assembly language is also a low-level language.
Nearly all computer systems have an assembly language
available for use.

	 Assembly language developed in the mid-1950s
was a great leap forward. It used symbolic codes, also
known as mnemonic codes, which are easy-to-remember
abbreviations, rather than numbers. Examples of these
codes include ADD for add, CMP for compare, and MUL
for multiply.
	 Assembly language programs consist of a series
of individual statements or instructions to instruct the
computer what to do. Basically, an assembly language
statement consists of a label, an operation code, and one
or more operands.
	 Labels are used to identify and refer instructions in the
program. The operation code (opcode) is a mnemonic that
specifies the operation to be performed, such as move, add,
subtract, or compare. The operand specifies the register
or the location in the main memory where the data to be
processed is located.
	 However, like machine language, the statement or
instruction in assembly language will vary from machine
to machine, because the language is directly related to the
internal architecture of the computer and is not designed to be
machine independent. This makes the code written in
assembly language less portable, as the code written to be
executed on one machine will not run on machines from a
different, or sometimes even the same manufacturer.
	 Nevertheless, the code written in assembly language
will be very efficient in terms of execution time and main
memory usage, as the language is similar to computer
language.
	 Programs written in assembly language need a
translator, often known as the assembler, to convert them
into machine language. This is because the computer will
understand only the language of 0s and 1s. It will not
understand mnemonics such as ADD and SUB.
	 The following instructions are part of an assembly
language code to illustrate addition of two numbers:

MOV AX,4	� Stores the value 4 in the AX register of the
CPU

MOV BX,6	� Stores the value 6 in the BX register of the
CPU

ADD AX,BX	� Adds the contents of the AX and BX registers
and stores the result in the AX register

Although it is much easier to work with assembly
language than with machine language, it still requires the
programmer to think on the machine’s level. Even today,
some programmers use assembly language to write those
parts of applications where speed of execution is critical;

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

38 Computer Programming

for example, video games, but most programmers have
switched to 3GL or 4GL even to write such codes.
	 Table 1.12 lists the advantages and disadvantages of
using assembly language.

Table 1.12  Advantages and disadvantages of assembly
language

Advantages Disadvantages

• � It is easy to understand.
• � It is easier to write

programs in assembly
language than in machine
language.

• � It is easy to detect and
correct errors.

•  It is easy to modify.
•  It is less prone to errors.

•  �Code is machine
dependent and thus
non-portable.

• � Programmers must
have a good knowledge
of the hardware and
internal architecture of
the CPU.

• � The code cannot be
directly executed by
the computer.

1.16.3  Third Generation: High-level Language

Third-generation programming languages are a refinement
of 2GLs. The second generation brought logical structure
to software. The third generation was introduced to make
the languages more programmer friendly.
	 The 3GLs spurred the great increase in data processing
that occurred in the 1960s and 1970s. In these languages,
the program statements are not closely related to the
internal characteristics of the computer. Hence, these
languages are often referred to as high-level languages.
	 In general, a statement written in a high-level
programming language will expand into several machine
language instructions. This is in contrast to assembly
languages, where one statement would generate one
machine language instruction. 3GLs made programming
easier, efficient, and less prone to errors.
	 High-level languages fall somewhere between
natural languages and machine languages. 3GLs include
FORTRAN and COBOL, which made it possible for
scientists and entrepreneurs to write programs using
familiar terms instead of obscure machine instructions.
	 The widespread use of high-level languages in the
early 1960s changed programming into something quite
different from what it had been. Programs were written in
languages that were more English-like, making them more
convenient to use and giving the programmer more time to
address a client’s problems.
	 Although 3GLs relieve the programmer of demanding
details, they do not provide the flexibility available in low-

level languages. However, a few high-level languages
such as C and FORTH combine some of the flexibility
of assembly languages with the power of high-level
languages, but these languages are not well suited to
programmers at the beginner level.
	 Some high-level languages were specifically designed
to serve a specific purpose (such as controlling industrial
robots or creating graphics), whereas other languages
were flexible and considered to be general purpose. Most
programmers preferred to use general-purpose high-level
languages such as BASIC, FORTRAN, Pascal, COBOL,
C++, or Java to write the code for their applications.
	 Again, a translator is needed to translate the
instructions written in a high-level language into the
computer-executable machine language. Such translators
are commonly known as interpreters and compilers. Each
high-level language has many compilers, and there is one
for each type of computer.
	 For example, the machine language generated by one
computer’s C compiler is not the same as the machine
language of some other computer. Therefore, it is necessary
to have a C compiler for each type of computer on which
the C programs are to be executed.
	 The 3GLs make it easy to write and debug a program
and give a programmer more time to think about its overall
logic. Programs written in such languages are portable
between machines. For example, a program written in
standard C can be compiled and executed on any computer
that has a standard C compiler.
	 Table 1.13 provides the advantages and disadvantages
of 3GLs.

Table 1.13  Advantages and disadvantages of 3GLs

Advantages Disadvantages

∑  �The code is machine
independent.

∑  �It is easy to learn and use the
language.

∑  �There are few errors.
∑  �It is easy to document and

understand the code.
∑  �It is easy to maintain the code.
∑  �It is easy to detect and

correct errors.

∑  �Code may not be
optimized.

∑  �The code is less
efficient.

∑  �It is difficult to write
a code that controls
the CPU, memory,
and registers.

Note

Assemblers, linkers, compilers, loaders, and interpreters are
all system software, which are discussed in Section 1.13.1.

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

39Computer History, Hardware, Software, Programming Languages, and Algorithms

1.16.4  Fourth Generation: Very High-level
Languages

With each generation, programming languages started
becoming easier to use and more similar to natural
languages. 4GLs are a little different from their prior
generation because they are non-procedural. While
writing a code using a procedural language, the
programmer has to tell the computer how a task is done—
add this, compare that, do this if the condition is true,
and so on—in a very specific step-by-step manner. In
striking contrast, while using a non-procedural language,
programmers define what they want the computer to do
but they do not supply all the details of how it has to
be done.
	 Although there is no standard rule that defines a 4GL,
certain characteristics of such languages include the
following:
∑	 The instructions of the code are written in English-like

sentences.

∑	 They are non-procedural, so users concentrate on the
‘what’ instead of the ‘how’ aspect of the task.

∑	 The code written in a 4GL is easy to maintain.

∑	 The code written in a 4GL enhances the productivity
of programmers, as they have to type fewer lines of
code to get something done. A programmer supposedly
becomes 10 times more productive when he/she writes
the code using a 4GL than using a 3GL.

	 A typical example of a 4GL is the query language,
which allows a user to request information from a database
with precisely worded English-like sentences. A query
language is used as a database user interface and hides the
specific details of the database from the user. For example,
when working with Structured Query Language (SQL), the
programmer just needs to remember a few rules of syntax
and logic, and therefore, it is easier to learn than COBOL
or C.
	 Let us take an example in which a report needs to be
generated. The report displays the total number of students
enrolled in each class and in each semester. Using a 4GL,
the request would look similar to the following:

TABLE FILE ENROLMENT

SUM STUDENTS BY SEMESTER BY CLASS

	 Thus, we see that a 4GL is very simple to learn and
work with. The same task if written in C or any other 3GL
would require multiple lines of code.
	 The 4GLs are still evolving, which makes it difficult
to define or standardize them. The only downside of a

4GL is that it does not make efficient use of a machine’s
resources. However, the benefit of executing a program
quickly and easily far outweighs the extra costs of running
it.

1.16.5  Fifth-generation Programming
Language

Fifth-generation programming languages (5GLs) are
centred on solving problems using the constraints given
to a program rather than using an algorithm written
by a programmer. Most constraint-based and logic
programming languages and some declarative languages
form a part of the 5GLS. These languages are widely used
in artificial intelligence research. Another aspect of a 5GL
is that it contains visual tools to help develop a program.
Typical examples of 5GLs include Prolog, OPS5, Mercury,
and Visual Basic.
	 Thus, taking a forward leap, 5GLs are designed to
make the computer solve a given problem without the
programmer. While working with a 4GL, programmers
have to write a specific code to do a work, but with a
5GL, they only have to worry about what problems need
to be solved and what conditions need to be met, without
worrying about how to implement a routine or an algorithm
to solve them.
	 In general, 5GLs were generally built upon LISP, many
originating on the LISP machine, such as ICAD. There are
also many frame languages, such as KL-ONE.
	 In the 1990s, 5GLs were considered the wave of the
future, and some predicted that they would replace all
other languages for system development (except the
low-level languages). During the period ranging from
1982 to 1993, Japan carried out extensive research on
and invested a large amount of money into their fifth-
generation computer systems project, hoping to design a
massive computer network of machines using these tools.
However, when large programs were built, the flaws of
the approach became more apparent. Researchers began to
observe that given a set of constraints defining a particular
problem, deriving an efficient algorithm to solve it is itself
a very difficult problem. All factors could not be automated
and some still require the insight of a programmer.
	 However, today the fifth-generation languages are
pursued as a possible level of computer language. Software
vendors across the globe currently claim that their software
meets the visual ‘programming’ requirements of the 5GL
concept.

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

40 Computer Programming

1.17  Programming Paradigms

A programming paradigm is a fundamental style of
programming that defines how the structure and basic
elements of a computer program will be built. The
style of writing programs and the set of capabilities
and limitations that a particular programming language
has depends on the programming paradigm it supports.
While some programming languages strictly follow a
single paradigm, others may draw concepts from more
than one. The sweeping trend in the evolution of high-
level programming languages has resulted in a shift in
programming paradigm. These paradigms, in sequence of
their application, can be classified as follows:
•	 Monolithic programming—emphasizes on finding a

solution
•	 Procedural programming—lays stress on algorithms
•	 Structured programming—focuses on modules
•	 Object-oriented programming—emphasizes on classes

and objects
•	 Logic-oriented programming—focuses on goals usually

expressed in predicate calculus
•	 Rule-oriented programming—makes use of ‘if-then-

else’ rules for computation
•	 Constraint-oriented programming—utilizes invariant

relationships to solve a problem
	 Each of these paradigms has its own strengths
and weaknesses and no single paradigm can suit all
applications. For example, for designing computation-
intensive problems, procedure-oriented programming is
preferred; for designing a knowledge base, rule-based
programming would be the best option; and for hypothesis
derivation, logic-oriented programming is used. In this
book, we will discuss only the first four paradigms.

1.17.1  Monolithic Programming

Programs written using monolithic programming
languages such as assembly language and BASIC consist
of global data and sequential code. The global data can
be accessed and modified (knowingly or mistakenly)
from any part of the program, thereby posing a serious
threat to its integrity. A sequential code is one in which
all instructions are executed in the specified sequence.
In order to change the sequence of instructions, jump
statements or ‘goto’ statements are used. Figure 1.62
shows the structure of a monolithic program. As the name
suggests, monolithic programs have just one program

module as such programming languages do not support
the concept of subroutines. Therefore, all the actions
required to complete a particular task are embedded
within the same application itself. This not only makes
the size of the program large but also makes it difficult
to debug and maintain. For all these reasons, monolithic
programming language is used only for very small and
simple applications where reusability is not a concern.

1.17.2  Procedural Programming

In procedural languages, a program is divided into
subroutines that can access global data. To avoid repetition
of code, each subroutine performs a well-defined task.
A subroutine that needs the service provided by another
subroutine can call that subroutine. Therefore, with ‘jump’,
‘goto’, and ‘call’ instructions, the sequence of execution of
instructions can be altered. Figure 1.63 shows the structure
of a procedural language. FORTRAN and COBOL are two
popular procedural programming languages.

ADB 10

BDB 20

SUM DB?

Global data

Sequential
code with
JMP
instruction

MOV AX, A

ADD AX, B

MOV SUM, AX

JMP STOP

STOP: EXIT

................

Figure 1.62  Structure of a monolithic program

Global data

Program

Subroutine

Figure 1.63  Structure of a procedural program

Advantages

•	 The only goal is to write correct programs
•	 Programs are easier to write as compared to monolithic

programming

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

41Computer History, Hardware, Software, Programming Languages, and Algorithms

Disadvantages

•	 No concept of reusability
•	 Requires more time and effort to write programs
•	 Programs are difficult to maintain
•	 Global data is shared and therefore may get altered

(mistakenly)

1.17.3  Structured Programming

Structured programming, also referred to as modular
programming, was first suggested by mathematicians,
Corrado Bohm and Guiseppe Jacopini in 1966. It was
specifically designed to enforce a logical structure on the
program to make it more efficient and easier to understand
and modify. Structured programming was basically
defined to be used in large programs that require large
development team to develop different parts of the same
program. Structured programming employs a top-down
approach in which the overall program structure is broken
down into separate modules. This allows the code to be
loaded into memory more efficiently and also be reused
in other programs. Modules are coded separately and
once a module is written and tested individually, it is then
integrated with other modules to form the overall program
structure (refer to Figure 1.64). Structured programming is,
therefore, based on modularization which groups related
statements together into modules. Modularization makes it
easier to write, debug, and understand the program. Ideally,
modules should not be longer than a page. It is always easy
to understand a series of 10 single-page modules than a
single 10-page program. For large and complex programs,
the overall program structure may further require the
need to break the modules into subsidiary pieces. This
process continues until an individual piece of code can
be written easily. Almost every modern programming
language similar to C, Pascal, etc., supports the concepts
of structured programming. In addition to the techniques
of structured programming for writing modules, it also
focuses on structuring its data. In structured programming,
the program flow follows a simple sequence and usually
avoids the use of ‘goto’ statements. Besides sequential
flow, structured programming also supports selection and
repetition as mentioned here.
•	 Selection allows for choosing any one of a number of

statements to execute, based on the current status of the
program. Selection statements contain keywords such
as ‘if’, ‘then’, ‘end if’, or ‘switch’ that help to identify
the order as a logical executable.

Global data

Program

Modules that have
local data and

code

Figure 1.64  Structured program

•	 In repetition, a selected statement remains active until
the program reaches a point where there is a need for
some other action to take place. It includes keywords
such as ‘repeat’, ‘for’, or ‘do… until’. Essentially,
repetition instructs the program as to how long it needs
to continue the function before requesting further
instructions.

Advantages

•	 The goal of structured programming is to write correct
programs that are easy to understand and change.

•	 Modules enhance programmers’ productivity by
allowing them to look at the big picture first and focus
on details later.

•	 With modules, many programmers can work on a
single, large program, with each working on a different
module.

•	 A structured program takes less time to be written than
other programs. Modules or procedures written for one
program can be reused in other programs as well.

•	 Each module performs a specific task.
•	 Each module has its own local data.
•	 A structured program is easy to debug because each

procedure is specialized to perform just one task and
every procedure can be checked individually for the
presence of any error. In striking contrast, unstructured
programs consist of a sequence of instructions that are
not grouped for specific tasks. Their logic is cluttered
with details and, therefore, difficult to follow.

•	 Individual procedures are easy to change as well as
understand. In a structured program, every procedure
has meaningful names and has clear documentation to
identify the task performed by it. Moreover, a correctly
written structured program is self-documenting and can
be easily understood by another programmer.

•	 More emphasis is given on the code and the least
importance is given to the data.

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

42 Computer Programming

Disadvantages

•	 Not data-centred
•	 Global data is shared and therefore may get inadvertently

modified
•	 Main focus is on functions

1.17.4  Object-oriented Programming (OOP)

With the increase in size and complexity of programs,
there was a need for a new programming paradigm
that could help to develop maintainable programs. To
implement this, the flaws in previous paradigms had to
be corrected. Consequently, OOP was developed. It treats
data as a critical element in the program development and
restricts its flow freely around the system. We have seen
that monolithic, procedural, and structured programming
paradigms are task-based as they focus on the actions the
program should accomplish. However, the object-oriented
paradigm is task-based and data-based. In this paradigm,
all the relevant data and tasks are grouped together in
entities known as objects (refer to Figure 1.65). For
example, consider a list of numbers. The procedural or
structured programming paradigm considers this list as
merely a collection of data. Any program that accesses
this list must have some procedures or functions to process
this list. For example, to find the largest number or to sort
the numbers in the list, we need specific procedures or
functions to do the task. Therefore, the list is a passive
entity as it is maintained by a controlling program rather
than having the responsibility of maintaining itself.
However, in the object-oriented paradigm, the list and the
associated operations are treated as one entity known as
an object. In this approach, the list is considered an object
consisting of the list, along with a collection of routines
for manipulating the list. In the list object, there may be
routines for adding a number to the list, deleting a number
from the list, sorting the list, etc. The major difference
between OOP and traditional approaches is that the
program accessing this list need not contain procedures
for performing tasks; rather, it uses the routines provided
in the object. In other words, instead of sorting the list as in
the procedural paradigm, the program asks the list to sort
itself. Therefore, we can conclude that the object-oriented
paradigm is task-based (as it considers operations) as well
as data-based (as these operations are grouped with the
relevant data).

Objects of a program
interact by sending

messages to each other

Object 1

Object 2

Object 3

Object 4

Figure 1.65  Object-oriented paradigm

	 The striking features of OOP include the following:
•	 Programs are data centred.
•	 Programs are divided in terms of objects and not

procedures.
•	 Functions that operate on data are tied together with the

data.
•	 Data is hidden and not accessible by external functions.
•	 New data and functions can be easily added as and when

required.
•	 Follows a bottom-up approach for problem solving.

In the forthcoming chapters, we are going to study C
programming language which supports both procedural as
well as structured programming.

1.18 E xample of a Structured
Program

Imagine that your institute wants to create a program to
manage the names and addresses of a list of students. For
this, you would need to break down the program into the
following modules:
•	 Enter new names and addresses
•	 Modify existing entries
•	 Sort entries
•	 Print the list
	 Now, each of these modules can be further broken
down into smaller modules. For example, the first module
can be subdivided into modules such as follows:
•	 Prompt the user to enter new data

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

43Computer History, Hardware, Software, Programming Languages, and Algorithms

•	 Read the existing list from the disk
•	 Add the name and address to the existing list
•	 Save the updated list to the disk
	 Similarly, ‘Modify existing entries’ can be further
divided into modules such as follows:
•	 Read the existing list from disk
•	 Modify one or more entries
•	 Save the updated list to disk
	 Observe that the two sub-modules—‘Read the existing
list from disk’ and ‘Save the updated list to disk’ are
common to both the modules. Hence, once these sub-
modules are written, they can be used in both the modules,
which require the same tasks to be performed. The
structured programming method results in a hierarchical
or layered program structure, which is depicted in Figure
1.66.

1.19  Software Development
Process

The design and development of correct, efficient, and
maintainable programs depend on the approach adopted by
the programmer to perform various activities that need to
be performed during the development process. The entire
program or software (collection of programs) development
process is divided into a number of phases, where each
phase performs a well-defined task. Moreover, the output
of one phase provides the input for its subsequent phase.
	 The phases in the software development life cycle
(SDLC) process is shown in Figure 1.67.
	 The phases in the SDLC process can be summarized as
follows:

Requirements analysis  In this phase, the user’s
expectations are gathered to know why the program/
software has to be built. Then, all the gathered requirements
are analysed to arrive at the scope or the objective of the

overall software product. The last activity in this phase
includes documenting every identified requirement of the
users in order to avoid any doubts or uncertainty regarding
the functionality of the programs.

Requirements
analysis

Design

Implementation

Testing

Software
deployment,
training, and

support

Maintenance

Figure 1.67  Phases in software development life cycle

	 The functionality, capability, performance, and
availability of hardware and software components are all
analysed in this phase.

Design  The requirements documented in the previous
phase acts as an input to the design phase. In the design
phase, a plan of actions is made before the actual
development process can start. This plan will be followed
throughout the development process. Moreover, in the

Main program to maintain the name and address list of the students

ENTER MODIFY SORT PRINT

Read
list

Add the
new

entry

Save the
updated

list

Read
list

Read
list

Modify
list

Save the
updated

list

Process
the
list

Read
list

Display
the

entries

Figure 1.66  Layered program structure

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

44 Computer Programming

design phase, the core structure of the software/program
is broken down into modules. The solution of the program
is then specified for each module in the form of algorithms
or flowcharts. The design phase, therefore, specifies how
the program/software will be built.

Implementation  In this phase, the designed algorithms
are converted into program code using any of the high-
level languages. The particular choice of language will
depend on the type of program, such as whether it is a
system or an application program. While C is preferred for
writing system programs, Visual Basic might be preferred
for writing an application program. The program codes are
tested by the programmer to ensure their correctness.
	 This phase is also called construction or code generation
phase as the code of the software is generated in this
phase. While constructing the code, the development
team checks whether the software is compatible with
the available hardware and other software components
that were mentioned in the Requirements Specification
Document created in the first phase .

Testing  In this phase, all the modules are tested together
to ensure that the overall system works well as a whole
product. Although individual pieces of codes are already
tested by the programmers in the implementation phase,
there is always a chance for bugs to creep into the program
when the individual modules are integrated to form the
overall program structure. In this phase, the software is
tested using a large number of varied inputs, also known
as test data, to ensure that the software is working as
expected by the user’s requirements that were identified in
the requirements analysis phase.

Software deployment, training, and support  After the
code is tested and the software or the program has been
approved by the users, it is installed or deployed in the
production environment. This is a crucial phase that is
often ignored by most developers. Program designers
and developers spend a lot of time to create software
but if nobody in an organization knows how to use it or
fix up certain problems, then no one would like to use
it. Moreover, people are often resistant to change and
avoid venturing into an unfamiliar area, so as a part of
the deployment phase, it has become very crucial to have
training classes for the users of the software.

Maintenance  Maintenance and enhancements are
ongoing activities that are done to cope with newly
discovered problems or new requirements. Such activities

may take a long time to complete as the requirement may
call for the addition of new code that does not fit the
original design or an extra piece of code, required to fix
an unforeseen problem. As a general rule, if the cost of the
maintenance phase exceeds 25% of the prior phase’s cost,
then it clearly indicates that the overall quality of at least
one prior phase is poor. In such cases, it is better to re-build
the software (or some modules) before the maintenance
cost shoots out of control.

1.20  PROGRAM DESIGN TOOLS:
ALGORITHMS, FLOWCHARTS,
PSEUDOCODES

This section will deal with different tools, which are used
to design solution(s) of a given problem at hand.

1.20.1  Algorithms

The typical meaning of an algorithm is a formally defined
procedure for performing some calculation. If a procedure
is formally defined, then it must be implemented using
some formal language, and such languages are known as
programming languages. The algorithm gives the logic of
the program, that is, a step-by-step description of how to
arrive at a solution.
	 In general terms, an algorithm provides a blueprint
to writing a program to solve a particular problem. It
is considered to be an effective procedure for solving a
problem in a finite number of steps. That is, a well-defined
algorithm always provides an answer, and is guaranteed to
terminate.
	 Algorithms are mainly used to achieve software reuse.
Once we have an idea or a blueprint of a solution, we
can implement it in any high-level language, such as C,
C++, Java, and so on. In order to qualify as an algorithm,
a sequence of instructions must possess the following
characteristics:
•	 Be precise
•	 Be unambiguous
•	 Not even a single instruction must be repeated infinitely.
•	 After the algorithm gets terminated, the desired result

must be obtained.

Control Structures Used In Algorithms

An algorithm has a finite number of steps and some steps
may involve decision-making and repetition. Broadly
speaking, an algorithm may employ three control
structures, namely, sequence, decision, and repetition.

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

45Computer History, Hardware, Software, Programming Languages, and Algorithms

Sequence    Sequence means that each step of the
algorithm is executed in the specified order. An algorithm
to add two numbers is given in Figure 1.68. This algorithm
performs the steps in a purely sequential order.

Step 1: Input first number as A
Step 2: Input second number as B
Step 3: Set Sum = A + B
Step 4: Print Sum
Step 5: End

Figure 1.68  Algorithm to add two numbers

Decision  Decision statements are used when the outcome
of the process depends on some condition. For example,
if x = y, then print “EQUAL”. Hence, the general form
of the if construct can be given as follows:

IF condition then process

	 A condition in this context is any statement that
may evaluate either to a true value or a false value. In the
preceding example, the variable x can either be equal or
not equal to y. However, it cannot be both true and false. If
the condition is true then the process is executed.
	 A decision statement can also be stated in the following
manner:

IF condition

 then process1

ELSE process2

	 This form is commonly known as the if-else construct.
Here, if the condition is true then process1 is executed,
else process2 is executed. An algorithm to check the
equality of two numbers is shown in Figure 1.69.

Step 1: Input first number as A
Step 2: Input second number as B
Step 3: IF A = B
 Print “Equal”
 ELSE
 Print “Not equal”
 [END of IF]
Step 4: End

Figure 1.69  Algorithm to test the equality of two numbers

Repetition  Repetition, which involves executing one or
more steps for a number of times, can be implemented
using constructs such as the while, do-while, and for
loops. These loops execute one or more steps until some
condition is true. Figure 1.70 shows an algorithm that
prints the first 10 natural numbers.

Step 1: [initialize] Set I = 1, N = 10
Step 2: Repeat Steps 3 and 4 while I <= N
Step 3: Print I
Step 4: SET I = I + 1
 [END OF LOOP]
Step 5: End

Figure 1.70  Algorithm to print the first 10 natural numbers

Example 1.1

Write an algorithm for interchanging/swapping two
values.

Solution

Step 1: Input first number as A

Step 2: Input second number as B

Step 3: Set temp = A

Step 4: Set A = B

Step 5: Set B = temp

Step 6: Print A, B

Step 7: End

Example 1.2

Write an algorithm to find the larger of two numbers.

Solution

Step 1: Input first number as A

Step 2: Input second number as B

Step 3: IF A > B

 Print A

 ELSE IF A < B

 Print B

 ELSE

 Print “The numbers are equal”

 [END OF IF]

Step 4: End

Example 1.3

Write an algorithm to find whether a number is even or odd.

Solution

Step 1: Input number as A

Step 2: IF A % 2 = 0

 Print “Even”

 ELSE

 Print “Odd”

 [END OF IF]

Step 3: End

Example 1.4

Write an algorithm to print the grade obtained by a student
using the following rules:

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

46 Computer Programming

Marks Grade

Above 75 O

60-75 A

50-60 B

40-50 C

Less than 40 D

Solution

Step 1: Enter the marks obtained as M

Step 2: IF M > 75

 Print “O”

Step 3: IF M >= 60 and M < 75

 Print “A”

Step 4: IF M >= 50 and M < 60

 Print “B”

Step 5: IF M >= 40 and M < 50

 Print “C”

 ELSE

 Print “D”

 [END OF IF]

Step 6: End

Example 1.5

Write an algorithm to find the sum of first N natural numbers.

Solution

Step 1: Input N

Step 2: Set I = 1, sum = 0

Step 3: Repeat Steps 4 and 5 while I <= N

Step 4: Set sum = sum + I

Step 5: Set I = I + 1

 [END OF LOOP]

Step 6: Print sum

Step 7: End

1.20.2  Flowcharts

A flowchart is a graphical or symbolic representation of
a process. It is basically used to design and document
virtually complex processes to help the viewers to visualize
the logic of the process, so that they can gain a better
understanding of the process and find flaws, bottlenecks,
and other less obvious features within it.
	 When designing a flowchart, each step in the process
is depicted by a different symbol and is associated with
a short description. The symbols in the flowchart (refer
Figure 1.71) are linked together with arrows to show the
flow of logic in the process.

Start or end
symbol

Arrows

Processing step

Input/Output
symbol

Decision symbol

Connector

Figure 1.71  Symbols of flowchart

	 The symbols used in a flowchart include the following:

•	 Start and end symbols are also known as the terminal
symbols and are represented as circles, ovals, or rounded
rectangles. Terminal symbols are always the first and
the last symbols in a flowchart.

•	 Arrows depict the flow of control of the program. They
illustrate the exact sequence in which the instructions
are executed.

•	 Generic processing step, also called as an activity,
is represented using a rectangle. Activities include
instructions such as add a to b, save the result.
Therefore, a processing symbol represents arithmetic
and data movement instructions. When more than
one process has to be executed simultaneously, they
can be placed in the same processing box. However,
their execution will be carried out in the order of their
appearance.

•	 Input/Output symbols are represented using a
parallelogram and are used to get inputs from the users
or display the results to them.

•	 A conditional or decision symbol is represented using
a diamond. It is basically used to depict a Yes/No
question or a True/False test. The two symbols coming
out of it, one from the bottom point and the other
from the right point, corresponds to Yes or True, and
No or False, respectively. The arrows should always
be labelled. A decision symbol in a flowchart can have
more than two arrows, which indicates that a complex
decision is being taken.

•	 Labelled connectors are represented by an identifying
label inside a circle and are used in complex or multi-
sheet diagrams to substitute for arrows. For each label,
the ‘outflow’ connector must have one or more ‘inflow’
connectors. A pair of identically labelled connectors is
used to indicate a continued flow when the use of lines
becomes confusing.

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

47Computer History, Hardware, Software, Programming Languages, and Algorithms

Significance of Flowcharts

A flowchart is a diagrammatic representation that
illustrates the sequence of steps that must be performed
to solve a problem. It is usually drawn in the early
stages of formulating computer solutions. It facilitates
communication between programmers and users. Once
a flowchart is drawn, programmers can make users
understand the solution easily and clearly.
	 Flowcharts are very important in the programming of
a problem as they help the programmers to understand
the logic of complicated and lengthy problems. Once a
flowchart is drawn, it becomes easy for the programmers to
write the program in any high-level language. Hence, the
flowchart has become a necessity for better documentation
of complex programs.
	 A flowchart follows the top-down approach in solving
problems.

Example 1.6

Draw a flowchart to calculate the sum of the first 10 natural
numbers.

Solution

START

Set I = 1
Set SUM = �

Set SUM = SUM + I
Set I = I + 1

Is I = 1�? NO

YES

Display SUM

END

Example 1.7

Draw a flowchart to add two numbers.

Solution

START

Read the values
of A and B

Calculate SUM = A + B

Print SUM

END

Example 1.8

Draw a flowchart to calculate the salary of a daily wager.

Solution

START

Input the no_of_hrs,
pay_per_hr, and
travel_allowance

Calculate SALARY=(no_of_hrs ×
pay_per_hr) + travel_allowance

Print SALARY

EN D

Example 1.9

Draw a flowchart to determine the largest of three numbers.

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

48 Computer Programming

Solution

START

Read the
values of

A, B, and C

Is A > B?
NO

YES

Is B > C?
NO

Print C

Print CIs A > C?

YES

Print A

NO

YES

Print B

END

Advantages

•	 They are very good communication tools to explain the
logic of a system to all concerned. They help to analyse
the problem in a more effective manner.

•	 They are also used for program documentation. They
are even more helpful in the case of complex programs.

•	 They act as a guide or blueprint for the programmers to
code the solution in any programming language. They
direct the programmers to go from the starting point of
the program to the ending point without missing any
step in between. This results in error-free programs.

•	 They can be used to debug programs that have error(s).
They help the programmers to easily detect, locate, and
remove mistakes in the program in a systematic manner.

Limitations

•	 Drawing flowcharts is a laborious and a time-consuming
activity. Just imagine the effort required to draw a
flowchart of a program having 50,000 statements in it!

•	 Many a times, the flowchart of a complex program
becomes complex and clumsy.

•	 At times, a little bit of alteration in the solution may
require complete redrawing of the flowchart.

•	 The essentials of what is done may get lost in the
technical details of how it is done.

•	 There are no well-defined standards that limit the details
that must be incorporated into a flowchart.

1.20.3  Pseudocodes

Pseudocode is a compact and informal high-level
description of an algorithm that uses the structural
conventions of a programming language. It facilitates
designers to focus on the logic of the algorithm without
getting bogged down by the details of language syntax.
An ideal pseudocode must be complete, describing the
entire logic of the algorithm, so that it can be translated
straightaway into a programming language.
	 It is basically meant for human reading rather than
machine reading, so it omits the details that are not essential
for humans. Such details include variable declarations,
system-specific code, and subroutines.
	 Pseudocodes are an outline of a program that can easily
be converted into programming statements. They consist
of short English phrases that explain specific tasks within
a program’s algorithm. They should not include keywords
in any specific computer language.
	 The sole purpose of pseudocodes is to enhance human
understandability of the solution. They are commonly used
in textbooks and scientific publications for documenting
algorithms, and for sketching out the program structure
before the actual coding is done. This helps even non-
programmers to understand the logic of the designed
solution. There are no standards defined for writing a
pseudocode, because a pseudocode is not an executable
program. Flowcharts can be considered as graphical
alternatives to pseudocodes, but require more space on
paper.

Example 1.10

Write a pseudocode for calculating the price of a product
after adding the sales tax to its original price.

Solution

1.	Read the price of the product

2.	Read the sales tax rate

3.	Calculate sales tax = price of the item

×; sales tax rate

4.	Calculate total price = price of the

product + sales tax

5.	Print total price

6.	End

Variables: price of the item, sales tax

rate, sales tax, total price

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

49Computer History, Hardware, Software, Programming Languages, and Algorithms

Example 1.11

Write a pseudocode to calculate the weekly wages of an
employee. The pay depends on wages per hour and the
number of hours worked. Moreover, if the employee has
worked for more than 30 hours, then he or she gets twice
the wages per hour, for every extra hour that he or she has
worked.

Solution

1.	Read hours worked

2.	Read wages per hour

3.	Set overtime charges to 0

4.	Set overtime hrs to 0

5.	IF hours worked > 30 then

a.	Calculate overtime hrs = hours worked –

30

b.	Calculate overtime charges = overtime hrs

× (2 × wages per hour)

c.	Set hours worked = hours worked –

overtime hrs

 ENDIF

6.	Calculate salary = (hours worked × wages

per hour) + overtime charges

7.	Display salary

8.	End

Variables: hours worked, wages per hour,

overtime charges, overtime hrs, salary

Example 1.12

Write a pseudocode to read the marks of 10 students. If
marks is greater than 50, the student passes, else the student
fails. Count the number of students passing and failing.

Solution

1.	Set pass to 0

2.	Set fail to 0

3.	Set no of students to 1

4.	WHILE no of students ≤ 10

 a. input the marks

 b. IF marks >= 50 then

 Set pass = pass + 1

 ELSE

 Set fail = fail + 1

 ENDIF

 ENDWHILE

5.	Display pass

6.	Display fail

7.	End

Variables: pass, fail, no of students, marks

1.21  TYPES OF ERRORS

While writing programs, very often we get errors in our
programs. These errors if not removed will either give
erroneous output or will not let the compiler to compile
the program. These errors are broadly classified under four
groups as shown in Figure 1.72.

Types of errors

Run-time
errors

Compile-time
errors

Linker
errors

Logical
errors

Figure 1.72  Types of Errors

Run-time E rrors  As the name suggests, run-time errors
occur when the program is being run executed. Such errors
occur when the program performs some illegal operations
like

•	 dividing a number by zero
•	 opening a file that already exists
•	 lack of free memory space
•	 finding square or logarithm of negative numbers

	 Run-time errors may terminate program execution,
so the code must be written in such a way that it handles
all sorts of unexpected errors rather terminating it
unexpectedly.

Compile-time Errors  Again as the name implies, compile-
time errors occur at the time of compilation of the program.
Such errors can be further classified as follows:

Syntax Errors  Syntax errors are generated when rules of a
programming language are violated.

Semantic Errors  Semantic errors are those errors which
may comply with rules of the programming language but
are not meaningful to the compiler.

Logical Errors  Logical errors are errors in the program
code that result in unexpected and undesirable output
which is obviously not correct. Such errors are not detected
by the compiler, and programmers must check their code
line by line or use a debugger to locate and rectify the
errors. Logical errors occur due to incorrect statements.

Linker E rrors  These errors occur when the linker is not
able to find the function definition for a given prototype.

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

50 Computer Programming

1.22  Testing and Debugging
Approaches

Testing is an activity that is performed to verify correct
behaviour of a program. It is specifically carried out with
an intent to find errors. Ideally testing should be conducted
at all stages of program development. However, in the
implementation stage, the following three types of tests
can be conducted:

Unit Tests 

Unit testing is applied only on a single unit or module to
ensure whether it exhibits the expected behaviour.

Integration Tests  These tests are a logical extension of
unit tests. In this test, two units that have already been
tested are combined into a component and the interface
between them is tested. The guiding principle is to test
combinations of pieces and then gradually expanding the
component to include other modules as well. This process
is repeated until all the modules are tested together. The
main focus of integration testing is to identify errors that
occur when the units are combined.

System Tests  System testing checks the entire system. For
example, if our program code consists of three modules
then each of the module is tested individually using unit
tests and then system test is applied to test this entire
system as one system.
	 Debugging,  on the other hand, is an activity that
includes execution testing and code correction. The main
aim of debugging is locating errors in the program code.
Once the errors are located, they are then isolated and
fixed to produce an error-free code. Different approaches
applied for debugging a code includes:

Brute-Force M ethod  In this technique, a printout of
CPU registers and relevant memory locations is taken,
studied, and documented. It is the least efficient way of
debugging a program and is generally done when all the
other methods fail.

Backtracking M ethod  It is a popular technique that
is widely used to debug small applications. It works
by locating the first symptom of error and then tracing
backward across the entire source code until the real cause
of error is detected. However, the main drawback of this
approach is that with increase in number of source code
lines, the possible backward paths become too large to
manage.

Cause Elimination  In this approach, a list of all possible
causes of an error is developed. Then relevant tests are
carried out to eliminate each of them. If some tests indicate
that a particular cause may be responsible for an error then
the data are refined to isolate the error.

Example 1.13

Let us take a problem, collect its requirement, design the
solution, implement it in C and then test our program.

Problem Statement  To develop an automatic system that
accepts marks of a student and generates his/her grade.

Requirements Analysis  Ask the users to enlist the rules
for assigning grades. These rules are:

Marks Grade

Above 75 O

60-75 A

50-60 B

40-50 C

Less than 40 D

Design  In this phase, write an algorithm that gives a
solution to the problem.

Step 1: Enter the marks obtained as M

Step 2: If M > 75 then print “O”

Step 3: If M >= 60 and M < 75 then print “A”

Step 4: If M >= 50 and M < 60 then print “B”

Step 5: If M >= 40 and M < 50 then print “C”

 else

 print “D”

Step 6: End

Implementation  Write the C program to implement the
proposed algorithm.

#include <stdio.h>

#include <conio.h>

int main()

{ int marks;

 char grade;

 clrscr();

 printf(“\n Enter the marks of the

student:”);

 scanf(“%d”, &marks);

 if (marks<0 || marks >100)

 { printf(“\n Not Possible”);

 exit(1);

 }

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

51Computer History, Hardware, Software, Programming Languages, and Algorithms

 if(marks>=75)

 grade = ‘O’;

 else if(marks>=60 && marks<75)

 grade = ‘A’;

 else if(marks>=50 && marks<60)

 grade = ‘B’;

 else if(marks>=40 && marks<50)

 grade = ‘C’;

 else

 grade = ‘D’;

 printf(“\n GRADE = %c”, grade);

}

Test  The above program is then tested with different test
data to ensure that the program gives correct output for all
relevant and possible inputs. The test cases are shown in
the table given below.

Test Case ID Input Expected Output Actual Output
1 –12 Not Possible Not Possible
2 112 Not Possible Not Possible

Test Case ID Input Expected Output Actual Output
3 32 D D
4 46 C C
5 54 B B
6 68 A A
7 91 O O
8 40 C C
9 50 B B

10 60 A A
11 75 O O
12 100 O O
13 0 D D

Note in the above table, we have identified test cases
for the following,
	 1.	 “Not Possible” Combinations
	 2.	 A middle value from each range
	 3.	 Boundary values for each range

POINTS TO REMEMBER

•	 A computer is an electronic machine that accepts data
and instructions and performs computations on the data
based on those instructions.

•	 Computers are used in all interactive devices, such as
cellular telephones, GPS units, portable organizers, ATMs,
and gas pumps.

•	 Modern-day computers are based on the principle of the
stored program concept, which was introduced by Sir
John von Neumann in the late 1940s.

•	 The speed of the computer is usually given in nanoseconds
and picoseconds.

•	 The term computer generation refers to the different
advancements of new computer technology.

•	 A computer has two parts—hardware, which does all the
physical work computers are known for, and software,
which tells the hardware what to do and how to do it.

•	 The CPU is a combination of the ALU and the CU. The CPU
is known as the brain of the computer system.

•	 The CU is the central nervous system of the entire
computer system. It manages and controls all the
components of the computer system.

•	 An input device is used to feed data and instructions into
the computer.

•	 Output devices are electromechanical devices that accept
digital data from the computer and convert them into
human understandable language.

•	 Computer memory is an internal storage area in the
computer that is used to store data and programs
either temporarily or permanently. It also stores the
intermediate results and the final results of processing.

•	 While the main memory holds instructions and data when
a program is being executed, the auxiliary or the secondary
memory holds data and programs not currently in use and
provides long-term storage.

•	 The primary memory is volatile, so the data can be
retained in it only when the power is on. Moreover, it is
very expensive and therefore limited in capacity.

•	 On the contrary, the secondary memory stores data or
instructions permanently, even when the power is turned
off. It is cheap and can store large volumes of data, which
is highly portable.

•	 Processor registers are located inside the processor and
are therefore directly accessed by the CPU. Each register
stores a word of data (which is either 32 or 64 bits).

•	 Cache memory is an intermediate form of storage
between the ultra-fast registers and the RAM.

•	 Computer software is written by computer programmers
using a programming language.

•	 Application software is designed to solve a particular
problem for users.

•	 System software represents programs that allow the
hardware to run properly. System software acts as an

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

52 Computer Programming

interface between the hardware of the computer and
the application software that users need to run on the
computer.

•	 Compilers and interpreters are special types of programs
that convert source code written in a programming
language (source language) into machine language
comprising of just two digits—1s and 0s (target language).

•	 The number of unique digits used to form numbers within
a number system is called radix of that system.

	 Decimal number system has a radix of 10, binary has a
radix of 2, octal has a radix of 8, and hexadecimal has a
radix of 16.

•	 Every programming language has a vocabulary of syntax
and semantics for instructing a computer to perform
specific tasks.

•	 While high-level programming languages are easy for the
humans to read and understand, the computer actually
understands the machine language, which consists of
only numbers.

•	 Second-generation programming languages comprise
the assembly languages which use symbols to represent
machine language instructions.

•	 An assembly language statement consists of a label, an
operation code, and one or more operands. Labels are
used to identify and refer instructions in the program. The
operation code (opcode) is a mnemonic that specifies the
operation that has to be performed, such as move, add,
subtract, or compare. The operand specifies the register
or the location in the main memory where the data to be
processed is located.

•	 Once the modules are coded and tested, the object files
of all the modules are combined together by the linker to
form the final executable file.

•	 3GLs (like FORTRAN, COBOL) made it possible for scientists
and business people to write programs.

•	 While working with 4GLs, programmers define only what
they want the computer to do, without supplying all the
details of how it has to be done.

•	 5GLs are centred on solving problems using the constraints
given to the program rather than using an algorithm
written by a programmer. They are widely used in artificial
intelligence research.

•	 Programs written using monolithic programming
languages such as assembly language and BASIC consist
of global data and sequential code.

•	 In procedural languages, a program is divided into
subroutines that can access global data.

•	 Structured programming employs a top-down approach
in which the overall program structure is broken down
into separate modules.

•	 In unstructured programming, programmers write small
and simple programs consisting of only one main program.

•	 Object-oriented programming treats data as a critical
element in the program development and restricts its
flow freely around the system.

•	 The entire program or software (collection of programs)
development process is divided into a number of phases,
where each phase performs a well-defined task.

•	 During requirements analysis, users’ expectations are
gathered to know why the program/software has to be
built.

•	 In the design phase, a plan of action is made.

•	 In the implementation phase, the designed algorithms
are converted into program code using any of the high-
level languages.

•	 In the testing phase, all the modules are tested together
to ensure that the overall system works well as a whole
product.

•	 After the code is tested and the software or the program
has been approved by the users, it is then installed or
deployed in the production environment.

•	 Maintenance and enhancements are on-going activities
that are done to cope with newly discovered problems or
new requirements.

Glossary

Computer  A machine that takes instructions and performs
computations based on those instructions.

Data  A collection of raw facts or figures.

Information  Processed data that provide answers to ‘who’,
‘what’, ‘where’, and ‘when’ types of questions.

Knowledge  The application of data and information to
answer the ‘how’ part of the question.

Input  The process of entering data and instructions into the
computer system.

Output  The process of giving the result of data processing
to the outside world.

Processing  The process of performing operations on the
data as per the instructions specified by the user.

Storage  The process of saving data and instructions
permanently in the computer so that it can be used for
processing.

Instructions  Commands given to the computer that tell
what it has to do.

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

53Computer History, Hardware, Software, Programming Languages, and Algorithms

Bit  It is short form of binary digit. It is the smallest possible
unit of data, which can either be 0 or 1.

Byte  A group of eight bits.

Word  A group of two bytes.

Program  A set of instructions that are arranged in a
sequence to guide a computer to find a solution for the given
problem.

Programming  The process of writing a program.

Hard copy output devices  Output devices that produce a
physical form of output.

Soft copy output devices  Output devices that produce an
electronic version of an output.

Memory  An internal storage area in the computer used to
store data and programs either temporarily or permanently.

DRAM A type of RAM that must be refreshed multiple times
in a second to retain its data contents.

SRAM A type of RAM that holds data without an external
refresh as long as it is powered.

Programmable read-only memory A type of ROM that	
can be programmed using high voltages.

Erasable programmable read only memory A type of ROM
that can be erased and re-programmed. The EPROM can be
erased by exposing the chip to strong ultraviolet light.

Flash memory A type of EEPROM in which the contents can
be erased under software control. The most flexible type of
ROM.

Software  A set of programs.

Command line interface Command line interface (CLI) is a
type of interface in which users interact with a program.

Graphical user interface Graphical user interface (GUI) is
a type of user interface that enables users to interact with
programs in more ways than typing. A GUI offers graphical
icons and visual indicators to display the information and
actions available to a user.

Basic input output system (BIOS) Program that tells the
computer what to do when it starts up, e.g., running

hardware diagnostics and loading the operating system into
RAM.

Machine language  The lowest level of programming that
was used to program the first stored-program computer
systems and is the only language that the computer
understands.

Programming language  A language specifically designed
to express computations that can be performed by the
computer.

Programming paradigm  A fundamental style of
programming that defines how the structure and basic
elements of a computer program will be built.

Translator A computer program, which translates a code
written in one programming language to a code in another
language that the computer understands.

Assembler  System software that converts the code written
in assembly language into machine language.

Compiler/Interpreter  System software that translates the
source code from a high-level programming language to a
lower-level language.

Loader  System software that copies programs from a
storage device to the main memory, where they can be
executed.

Algorithm  A formally defined procedure for performing
some calculation and provides a blueprint to write a program
that solves a particular problem.

Flowchart  A graphical or symbolic representation of a
process.

Pseudocode  A compact and informal high-level description
of an algorithm that uses the structural conventions of
a programming language.

Compile-time errors  These are errors that occur at the time
of compilation of the program

Debugging  An activity that includes execution testing and
code correction. The main aim of debugging is to locate
errors in the program code.

Runtime errors  These are errors that occur when the
program is being executed.

Testing  An activity performed to verify the correct behaviour
of a program. It is specifically carried out with the intent to
find errors.

Exercises

Fill in the blanks

	 1.	 A program is the ________.

	 2.	 Computers operate on ________ based on ________.

	 3.	 The speed of computers is expressed in ________ or
________.

	 4.	 Raw facts or figures are called ________.

	 5.	 _______ and ________ are examples of first-generation
computing devices.

	 6.	 Second-generation computers were first developed for
the ________ industry.

	 7.	 _______ packages allow easy manipulation and analysis
of data organized in rows and columns.

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

54 Computer Programming

	 8.	 CRAY-1, CRAY-2, Control Data CYBER 205, and ETA A-10
are ________.

	 9.	 _______ concept was introduced by Sir John von
Neumann in the late 1940s.

	10.	 Android Jellybean, Windows, and iOS are all examples
of popular operating systems used in ________ and
________.

	11.	 _______ unit directs and coordinates the computer
operations.

	12.	 Intermediate results during program execution are
stored in ________.

	13.	 _______ stores the address of the data or instruction to
be fetched from memory.

	14.	 An instruction consists of ________ and ________.
	15.	 The instruction cycle is repeated continuously until

________.
	16.	 Buses in a computer system can carry ________,

________, and ________.
	17.	 In an instruction, ________ specifies the computation to

be performed.
	18. 	Giga is ________ and tera is ________.
	19. 	____ instructs the hardware what to do and how to do

it.
	20. 	The hardware needs a _____ to instruct what has to be

done.
	21. 	_______ is used to feed data and instructions into the

computer.
	22. 	_______ captures everything on the screen as an image.
	23. 	_______ is used to enter information or write on the

touchscreen of a phone.
	24. 	_______ technology is used for electronically extracting

data from marked fields.
	25. 	_______ converts analog signals generated through a

microphone into digital data.
	26. 	_______ capture videos that can be transferred via the

Internet in real-time.
	27. 	_______ allow the users to talk and listen at the same

time.
	28. 	The resolution of a printer means ________.
	29.	 The ________ memory holds data and programs that

are currently being executed by the CPU.
	30.	 _______ memory is volatile.
	31.	 _______ memory stores data or instructions

permanently.
	32.	 _______ are the fastest of all forms of computer data

storage.
	33. 	Static RAM is made of ________.
	34. 	_______ is a one-time programmable ROM.
	35.	 The process of writing data to an optical disk is called

________.

	36.	 The process of writing a program is called _____.
	37.	 ____ is used to write computer software.
	38.	 ____ transforms source code into binary language.
	39.	 ____ allows a computer to interact with additional

hardware devices such as printers, scanners, and video
cards.

	40.	 _____helps in coordinating system resources and allows
other programs to execute.

	41.	 ____ provides a platform for running application
software.

	42.	 _____ is a software package that enables its users
to create, edit, print, and save documents for future
retrieval and reference.

	43.	 Information from a database is extracted in the form of
a _____.

	44.	 Adobe Photoshop is an example of ______ software.
	45.	 _____ is a good language for processing numerical data.
	46.	 Assembly language statement consists of a ______,

______, and one or more ______.
	47.	 _____ is used to convert assembly-level program into

machine language.
	48.	 _____ and ______ are used to translate the instructions

written in high-level language into computer-executable
machine language.

	49.	 Fifth-general programming languages are widely used in
________.

	50.	 The object file is created when ________.
	51.	 ________ is extensively used for writing efficient codes

for operating systems and compilers.
	52.	 Programs written in ________ are robust, secure, and

reliable.
	53.	 _____ and _______ statements are used to change the

sequence of execution of instructions.
	54.	 ________ paradigm supports bottom-up approach of

problem solving.
	55.	 FORTRAN and COBOL are two popular _________

programming languages.
	56.	 ______ is a formally defined procedure for performing

some calculation.

	57.	 ______ statements are used when the outcome of the
process depends on some condition.

	58.	 Repetition can be implemented using constructs such as
______, ______, and ______.

	59.	 The ______ symbol is always the first and the last symbol
in a flowchart.

	60.	 ______ is a form of structured English that describes
algorithms.

	61.	 ______ is used to express algorithms and as a mode of
human communication.

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

55Computer History, Hardware, Software, Programming Languages, and Algorithms

	62.	 In the ______ phase, a plan of actions is made.

	63.	 In the ______ phase, designed algorithms are converted
into program code.

	64.	 User’s expectations are gathered in the ______ phase.

Multiple-choice Questions

	 1.	 A computer works on ________ given to it.

	 (a)	 Computations	 (b)	 Instructions

	 (c)	 Data	 (d)	 b and c

	 2.	 Computer is a _________ machine.

	 (a)	 Electrical	 (b)	 Mechanical

	 (c)	 Electronic	 (d)	 Physical

	 3.	 _________ comprises processed data.

	 (a)	 Data	 (b)	 Information

	 (c)	 Knowledge	 (d)	 Instructions

	 4.	 Commands given to the computer that tells what it has
to do are __________ .

	 (a)	 Data	 (b)	 Information

	 (c)	 Knowledge	 (d)	 Instructions

	 5.	 Which generation of computers were used in the period
1955–1964?

	 (a)	 First	 (b)	 Second

	 (c)	 Third	 (d)	 Fourth

	 6.	 Which of the following were used for manufacturing
first generation computers?

	 (a)	 Vacuum tubes	 (b)	 Transistors

	 (c)	 Integrated chips	 (d)	 ULSI

	 7.	 Select the computer(s) in the first generation of
computers.

	 (a)	 ENIAC	 (b)	 EDVAC

	 (c)	 EDSAC	 (d)	 All of these

	 8.	 Which was the first commercial computer delivered to a
business client?

	 (a)	 UNIVAC	 (b)	 ENIAC

	 (c)	 EDSAC	 (d)	 None of these

	 9.	 Which technology was used to manufacture second
generation computers?

	 (a)	 Vacuum tubes	 (b)	 Transistors

	 (c)	 ICs	 (d)	 None of these

	10.	 Select the computer(s) in the second generation of
computers.

	 (a)	 UNIVAC LARC	 (b)	 EDVAC

	 (c)	 EDSAC	 (d)	 All of these

	11.	 Which generation of computers were manufactured
using ICs with LSI and later with VLSI technology?

	 (a)	 First	 (b)	 Second

	 (c)	 Third	 (d)	 Fourth

	12.	 In which computer generation did microcomputers
come into existence?

	 (a)	 First	 (b)	 Second

	 (c)	 Third	 (d)	 Fourth

	13.	 Currently on which generation of computers are we
working?

	 (a)	 First	 (b)	 Fifth

	 (c)	 Third	 (d)	 Fourth

	14.	 Name an Indian supercomputer.

	 (a)	 UNIVAC LARC	 (b)	 EDVAC

	 (c)	 EDSAC	 (d)	 CRAY XMP

	15.	 The process of entering data and instructions into the
computer system is called ______.

	 (a)	 Input	 (b)	 Output

	 (c)	 Processing	 (d)	 Result

	16.	 Computer understands only __________ language.

	 (a)	 Assembly	 (b)	 Binary

	 (c)	 High level	 (d)	 SQL

	17.	 In which part of the CPU are all computations performed?

	 (a)	 CU	 (b)	 MU

	 (c)	 ALU	 (d)	 Registers

	18.	 ____________ is the main input device.

	 (a)	 Mouse	 (b)	 Joystick

	 (c)	 Keyboard	 (d)	 Touch screen

	19.	 Name a cursor control device widely used in computer
games and CAD/CAM applications.

	 (a)	 Keyboard	 (b)	 Joystick

	 (c)	 Mouse	 (d)	 Stylus

	20.	 Which output device is used in home theatre systems?

	 (a)	 Printer	 (b)	 Plotter

	 (c)	 Projector	 (d)	 Speakers

	21.	 A printer can print carbon copies of a document. Which
printer are we talking about?

	 (a)	 Laser	 (b)	 Inkjet

	 (c)	 Dot matrix	 (d)	 Thermal

	22.	 Which device will you use to draw maps?

	 (a)	 Laser printer	 (b)	 Projector

	 (c)	 Plotter	 (d)	 Dot matrix printer

	23.	 __________ is the leading vendor of plotters worldwide.

	 (a)	 Hewlett-Packard	 (b)	 Google

	 (c)	 Microsoft	 (d)	 Nokia

	24.	 Which memory holds data and programs not currently
in use and provides long-term storage?

	 (a)	 RAM	 (b)	 ROM

	 (c)	 Primary memory	 (d)	 Secondary memory

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

56 Computer Programming

	25.	 Which storage device will you use to back up large
amount of data?

	 (a)	 Magnetic hard disk	 (b)	 ROM
	 (c)	 RAM	 (d)	 Magnetic tape
	26.	 Identify the storage device—an optical disc with storage

capacity from 4.7 GB to 17 GB.
	 (a)	 CD	 (b)	 Blu Ray
	 (c)	 DVD	 (d)	 Hard disk
	27.	 Which of the following enables the users to interact with

hardware components efficiently?
	 (a)	 Application software
	 (b)	 Communication software
	 (c)	 Presentation software
	 (d)	 System software
	28.	 Which of the following copies programs from a storage

device to the main memory?
	 (a)	 Compiler	 (b)	 Interpreter
	 (c)	 Assembler	 (d)	 Loader
	29.	 Code written in which language can be directly executed

by the computer?
	 (a)	 Compiled	 (b)	 Assembly
	 (c)	 Binary	 (d)	 Interpreted
	30.	 _________ is a mnemonic that specifies the operation

that has to be performed.
	 (a)	 Operand	 (b)	 Opcode
	 (c)	 Label	 (d)	 Comment
	31.	 A group of 4 binary digits is called a _______.
	 (a)	 Bit	 (b)	 Nibble
	 (c)	 Byte	 (d)	 Word
	32.	 A group of 8 binary digits is called a _______.
	 (a)	 Bit	 (b)	 Nibble
	 (c)	 Byte	 (d)	 Word
33. The brain of the computer is the
	 (a)	 control unit	 (b)	 ALU
	 (c)	 CPU	 (d)	 All of these
	34.	 The memory used by the CPU to store instructions and

data that are repeatedly required to execute programs
to improve overall system performance is

	 (a)	 primary memory	 (b)	 auxiliary memory

	 (c)	 cache memory	 (d)	 fl ash memory

	35.	 Magnetic tapes, floppy disks, optical disks, flash memory,
and hard disks are examples of

	 (a)	 primary memory	 (b)	 auxiliary memory

	 (c)	 cache memory	 (d)	 flash memory

	36.	 The memory used in MP3 players, PDAs, laptops, and
digital audio players is

	 (a)	 primary memory	 (b)	 optical memory

	 (c)	 cache memory	 (d)	 flash memory

37. The component of the processor that controls the flow
of data through the computer system is

	 (a)	 BIU	 (b)	 execution unit

	 (c)	 CU	 (d)	 ALU

38. Which keys are used by applications and operating
systems to perform specific commands?

	 (a)	 Typing keys	 (b)	 Arrow keys

	 (c)	 Control keys	 (d)	 Function keys

	39.	 Select the optical devices from the following options:

	 (a)	 MICR	 (b)	 Barcode reader

	 (c)	 Scanner	 (d)	 All of these

	40.	 Select the printer that uses impact printer technology
from the following options:

	 (a)	 Daisy wheel	 (b)	 Laser

	 (c)	 Band	 (d)	 Inkjet

	41.	 Which type of screen is used in gaming devices, clocks,
watches, calculators, and telephones?

	 (a)	 LCD	 (b)	 Plasma

	 (c)	 CRT	 (d)	 All of these

	42.	 BIOS is stored in

	 (a)	 RAM	 (b)	 ROM

	 (c)	 hard disk	 (d)	 none of these

	43.	 Which of the following languages should not be used for
organizing large programs?

	 (a)	 C	 (b)	 C++

	 (c)	 COBOL	 (d)	 FORTRAN

	44.	 Which of the following languages is a symbolic language?

	 (a)	 Machine language	 (b)	 C

	 (c)	 Assembly language	 (d)	 All of these

	45.	 Which of the following languages does not need any
translator?

	 (a)	 Machine language	 (b)	 3GL

	 (c)	 Assembly language	 (d)	 4GL

	46.	 Choose the odd one out from the following:

	 (a)	 Compiler	 (b)	 Interpreter

	 (c)	 Assembler	 (d)	 Linker

	47.	 Windows Vista, Linux, and UNIX are examples of

	 (a)	 operating systems	 (b)	 computer hardware

	 (c)	 firmware	 (d)	 device drivers

	48.	 Which among the following is an excellent analytical
tool?

	 (a)	 Microsoft Word	 (b)	 Microsoft Excel

	 (c)	 Microsoft Access	 (d)	 Microsoft PowerPoint

	49.	 Which interface makes use of the graphical components
to allow users to easily interact with the computer
system?

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

57Computer History, Hardware, Software, Programming Languages, and Algorithms

	 (a)	 CPU	 (b)	 CLI

	 (c)	 GUI	 (d)	 CUI

	50.	 The language that is used to program the first stored-
program computer systems is

	 (a)	 Machine language	 (b)	 Assembly language

	 (c)	 Pascal	 (d)	 Fortran

	51.	 The register or location in main memory from where the
data to be processed is located is specified by

	 (a)	 Label	 (b)	 Opcode

	 (c)	 Operand(s)	 (d)	 None of these

	52.	 The generation to which COBOL belongs is:

	 (a)	 First generation	 (b)	 Second generation

	 (c)	 Third generation	 (d)	 Fourth generation

	53.	 Of the following, a 5GL is

	 (a)	 Prolog	 (b)	 OPSS

	 (c)	 Mercury	 (d)	 LISP

	54.	 The advantages of modularization are

	 (a)	 Reusability	 (b)	 Enhanced productivity

	 (c)	 Less time to develop	 (d)	 All of these

55.	 The code in 0s and 1s is

	 (a)	 Source code	 (b)	 Object code

	 (c)	 Executable code	 (d)	 None of these

56.	 The system software that creates the final executable
file is

	 (a)	 Assembler	 (b)	 Compiler

	 (c)	 Loader	 (d)	 Linker

57.	 The type of high-level language that uses predicate logic
is

	 (a)	 Unstructured	 (b)	 Procedure oriented

	 (c)	 Logic oriented	 (d)	 Object oriented

58.	 The high-level language that is used for numeric,
scientific, statistical, and engineering computations is

	 (a)	 C	 (b)	 Basic

	 (c)	 Java	 (d)	 FORTRAN

59.	 The most portable language is

	 (a)	 C	 (b)	 Basic

	 (c)	 Java	 (d)	 FORTRAN

	6o.	 Which among the following is an on-going activity in
software development?

	 (a)	 Requirements analysis	 (b)	 Implementation

	 (c)	 User training	 (d)	 Maintenance

61.	 The functionality, capability, performance, availability of
hardware and software components are all analysed in
which phase?

	 (a)	 Requirements analysis	 (b)	 Design

	 (c)	 Implementation	 (d)	 Testing

	62.	 In which phase are algorithms, flowcharts, and
pseudocodes prepared?

	 (a)	 Requirements analysis	 (b)	 Design

	 (c)	 Implementation	 (d)	 Testing

	63.	 Algorithms should be

	 (a)	 precise	 (b)	 unambiguous

	 (c)	 clear	 (d)	 all of these

	64.	 To check whether a given number is even or odd, you
will use which type of control structure?

	 (a)	 Sequence	 (b)	 Decision

	 (c)	 Repetition	 (d)	 All of these

	65.	 Which one of the following is a graphical or symbolic
representation of a process?

	 (a)	 Algorithm	 (b)	 Flowchart

	 (c)	 Pseudocode	 (d)	 Program

	66.	 In a flowchart, which symbol is represented using a
rectangle?

	 (a)	 Terminal	 (b)	 Decision

	 (c)	 Activity	 (d)	 Input/Output

	67.	 Which of the following details are omitted in
pseudocodes?

	 (a)	 Variable declaration	 (b)	 System specific code

	 (c)	 Subroutines	 (d)	 All of these

	68.	 Trying to open a file that already exists, will result in
which type of error?

	 (a)	 Run time	 (b)	 Compile time

	 (c)	 Linker error	 (d)	 Logical error

	69.	 Which of the following errors is generated when rules of
a programming language are violated?

	 (a)	 Syntax error	 (b)	 Semantic error

	 (c)	 Linker error	 (d)	 Logical error

State True or False

	 1.	 Computers work on the GIGO concept.

	 2.	 1 nanosecond = 1×10−12 seconds.

	 3.	 Floppy disks and hard disks are examples of primary
memory.

	 4.	 First-generation computers used a very large number of
transistors.

	 5.	 First-generation computers could be programmed only
in binary language.

	 6.	 Fifth-generation computers are based on AI.

	 7.	 Network computers have more processing power,
memory, and storage than a desktop computer.

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

58 Computer Programming

	 8.	 RAM stores the data and parts of program, the
intermediate results of processing, and the recently
generated results of jobs that are currently being worked
on by the computer.

	 9.	 Computer hardware does all the physical work
computers are known for.

	10.	 The computer hardware cannot think and make
decisions on its own.

	11.	 The term software refers to a set of instructions arranged
in a sequence to guide a computer to find a solution for
the given problem.

	12.	 BIOS defines the firmware interface.

	13.	 Pascal cannot be used for writing well-structured
programs.

	14.	 Assembly language is a low-level programming language.

	15.	 Microsoft DOS is a non-graphical command line
operating system.

	16.	 iOS is an open-source operating system.

	17.	 C and Pascal can be used for writing well-structured and
readable programs.

	18.	 Code written in machine language is highly portable.

	19.	 Home and End keys move the cursor to the previous and
next page, respectively.

	20.	 OCR is used to verify the legitimacy or originality of
paper documents.

	21.	 The monitor is a soft copy output device.

	22.	 Non-impact printers create characters by striking an
inked ribbon against the paper.

	23.	 A laser printer uses the same technology used in
photocopier machines.

	24.	 A plotter is used to print vector graphics.

	25.	 A mouse cannot be used with a laptop computer.

	26.	 Soft copy output devices are those that produce a
physical form of output.

	27.	 Primary memory is faster than secondary memory.

	28.	 Cache memory is made of DRAM.

	29.	 Memory cards use flash memory to store data.

	30.	 The ALU initiates action to execute the instructions.

	31.	 The program counter stores the address of the next
instruction to be executed.

	32.	 The executing unit provides functions for data transfer.

	33.	 A processor can perform all operations in a single clock
tick.

	34.	 A byte is a group of eight bits.

	35.	 A computer can perform thousands of instructions in
one second.

	36.	 First generation of computers were used for commercial
applications.

	37.	 Knowledge is the application of data and information.

	38.	 Computer and all its physical parts are known as
software.

	39.	 1942–1955 marks the second generation of computers.

	40.	 Machine/assembly language was used in first generation
of computers.

	41.	 SSI and MSI technology was used in fourth generation of
computers.

	42.	 Pascal, COBOL, FORTRAN, and BASIC are all low level
programming languages.

	43.	 Computer is a reliable machine.

	44.	 If input data is wrong, then the output will also be
erroneous.

	45.	 When data and programs have to be used, they are
copied from the primary memory into the secondary
memory.

	46.	 Robots cannot work in high temperature, high pressure
conditions, or in processes which demand very high
level of accuracy.

	47.	 CPU can directly access primary memory.

	48.	 Primary memory can be used for storing data
permanently.

	49.	 ALU manages and controls all the components of the
computer system.

	50.	 VDU is an input device.

	51.	 Mouse can be used to create graphics such as lines,
curves, and freehand shape on the screen.

	52.	 Scanner is an input device.

	53.	 OMR is used to verify the legitimacy or originality of
paper documents.

	54.	 Webcams are used for videoconferencing and as security
cameras.

	55.	 Searching data is faster in a soft copy output.

	56.	 Dot-matrix and daisywheel printers are examples of
impact printers.

	57.	 Critical programs which are used to start the computer
when it is turned on are stored in RAM.

	58.	 Hard disk drive is an example of ROM.
	59.	 A CD uses laser technology to read and write data on the

disc.
	60.	 CDs can store data on both sides of the disc.
	61.	 Application software provides a general programming

environment in which programmers can create specific
applications to suit their needs.

	62.	 Compiler and operating system is an example of
application software.

	63.	 MS Word and Paint are examples of application software.
	64.	 Compiler translates one statement of high level language

program into machine language and executes it.

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

59Computer History, Hardware, Software, Programming Languages, and Algorithms

	65.	 Microsoft Excel is a word-processing software.
	66.	 Labels are optional in assembly language.
	67.	 Assembly language code is machine-dependant.
	68.	 In monolithic paradigm, global data can be accessed and

modified from any part of the program.
	69.	 Monolithic programs are easy to debug and maintain.
	70.	 Structured programming is based on modularization.
	71.	 Object-oriented programming supports modularization.
	72.	 Structured programming heavily uses goto statements.
	73.	 Modules enhance the programmer’s productivity.
	74.	 A structured program takes more time to be written

than other programs.
	75.	 An algorithm solves a problem in a finite number of

steps.
	76.	 Flowcharts are drawn in the early stages of formulating

computer solutions.
	77.	 The main focus of pseudocodes is on the details of the

language syntax.
	78.	 In the deployment phase, all the modules are tested

together to ensure that the overall system works well as
a whole product.

	79.	 Maintenance is an ongoing activity.
	80.	 Algorithms are implemented using a programming

language.
	81.	 Logical errors are detected by the compiler.
	82.	 Algorithm solves a problem in a finite number of steps.
	83.	 Repetition means that each step of the algorithm is

executed in a specified order.
	84.	 Terminal symbol depicts the flow of control of the

program.
	85.	 Labelled connectors are square in shape.
	86.	 Fourth-generation programming languages are non-

procedural languages.
87.	 It takes less time to write a structured program than

other programs.

88.	 Logic errors are much harder to locate and correct than
syntax errors.

89.	 An interpreter translates the code and also executes it.

Review Questions

	 1.	 Define a computer.

	 2.	 Differentiate between data and information.

	 3.	 Differentiate between primary memory and secondary
memory.

	 4.	 Write a short note on the characteristics of a computer.

	 5.	 Computers work on the garbage-in and garbage-out
concept. Comment.

	 6.	 Explain the evolution of computers. Further, state how
computers in one generation are better than their
predecessors.

	 7.	 Broadly classify computers based on their speed, the
amount of data that they can hold, and price.

	 8.	 Discuss the variants of microcomputers that are widely
used today.

	 9.	 Explain the areas in which computers are being applied
to carry out routine and highly-specialized tasks.

	10.	 How does a keyboard work?

	11.	 How is OCR technology better than an ordinary image
scanner?

	12.	 How does MICR technology help to detect fraud in
cheque payments?

	13.	 Web cameras can be used to check security in a bank.
Comment.

	14.	 How are projectors used to display information to a
user?

	15.	 How are headsets better than speakers and headphones?

	16.	 Differentiate between impact and non-impact printers.

	17.	 Why is a line printer preferred over a dot matrix printer?
If you have an image to be printed, which out of the two
will you use and why?

	18.	 Under which situation, will you prefer to use an inkjet
printer over a laser printer?

	19.	 How is a plotter different from a printer?

	20.	 What are input devices? Discuss the different types of
input devices in detail.

	21.	 Give a detailed note on different output devices.

	22.	 Differentiate between a soft copy and a hard copy
output.

	23.	 What do you understand by computer memory?

	24.	 Differentiate between primary memory and secondary
memory.

	25.	 Give the characteristics of the memory hierarchy chart.

	26.	 Differentiate between static RAM and dynamic RAM.

	27.	 Give the organization of computer memory. How does
the CPU access a memory cell?

	28.	 A DVD-ROM can store more data than a CD-ROM of the
same size. Comment.

	29.	 What is a USB flash drive?

	30.	 Write a short note on memory cards.

	31.	 Briefly discuss the importance of cache memory.

	32.	 What do you understand by re-programmable ROM
chips?

	33.	 Draw and explain the basic architecture of a processor.

	34.	 ‘CPU is the brain of the computer.’ Justify.

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

60 Computer Programming

	35.	 Broadly classify the computer system into two parts. In
addition, make a comparison between a human body
and the computer system, thereby explaining which part
performs what function.

	36.	 Differentiate between computer hardware and software.

	37.	 Define programming.

	38.	 What is booting?

	39.	 What criteria are used to select the language in which a
program will be written?

	40.	 Explain the role of the operating system.

	41.	 Why are compilers and interpreters used? Is there any
difference between a compiler and an interpreter?

	42.	 What is application software? Give examples.

	43.	 Differentiate between syntax errors and logical errors.

	44.	 Can a program written in a high-level language execute
without a linker?

	45.	 How is application software different from system
software?

	46.	 Write a short note on the different operating systems.

	47.	 Define the term programming language. Give certain
examples of such languages.

	48.	 What is machine language? Do we still use it?

	49.	 Code written in machine language is efficient and fast to
execute. Comment.

	50.	 How is a third generation programming language better
than its predecessors?

	51.	 4GL code enhances the productivity of the programmers.
Justify.

	52.	 Define an algorithm. How is it useful in the context of
software development?

	53.	 Explain sequence, repetition, and decision statements.
Also give the keywords used in each type of statement.

	54.	 With the help of an example, explain the use of a
flowchart.

	55.	 How is a flowchart different from an algorithm? Do we
need to have both of them for program development?

	56.	 What do you understand by the term pseudocode?

	57.	 Differentiate between algorithm and pseudocodes.

	58.	 Define the term programming language. Give examples
of such languages.

	59.	 State the factors that a user should consider to choose a
particular programming language.

	60.	 What is machine language? Do we still use it?

	61.	 Write a short note on assembly language.

	62.	 What is an assembler?

	63.	 Differentiate between an assembler and an interpreter.

	64.	 A code written in machine language is efficient and fast
to execute. Comment.

	65.	 How is a third-generation programming language better
than its predecessors?

	66.	 A 4GL code enhances the productivity of the
programmers. Justify.

	67.	 Write a short note on structured programming.

	68.	 What is modularization? Give its advantages.

	69.	 How can you categorize high-level languages?

	70.	 Differentiate between a procedural language and an
object-oriented language.

	71.	 Differentiate between a class and an object.

	72.	 Explain the main features of an object-oriented
programming language.

	73.	 If given a program to write, how will you select the
programming language to write the code?

	74.	 What do you understand by the term ‘programming
paradigm’?

	75.	 Briefly explain the phases in software development
project.

© Oxford University Press. All rights reserved.

Oxfo
rd

Univ
ers

ity
 Pres

s

	Prelims
	Chap-01
	Chap-02
	Chap-03
	CS_Ch-2&3
	Chap-04
	Chap-05
	Chap-06
	Chap-07
	CS_Ch-6&7
	Chap-08
	Chap-09
	Appen-A
	Appen-B
	Appen-C
	Appen-D
	Appen-E
	Solved Question Paper
	Unsolved Question Paper
	About the author

